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1 Introduction 

 

In the first part of this report the use of a Kalman filter in the Real Time URBIS model 

will be discussed. The Real Time URBIS model is a model which calculates the 

concentration NOx in a city or in an industrialized region. The concentration NOx is 

assumed to be equal to the sum of the concentrations NO and NO2. Nitrogen oxides are 

formed by the burning of fossil fuels in traffic and industry, they will arise if nitrogen 

from the air and from fuels reacts with oxygen. These nitrogen oxides react under 

influence of sunlight to air pollution, like smog and acid rain. Nitrogen oxides can also 

causes trouble for the eyes and lungs. Therefore the European commission has set out 

limit values for the concentrations of NO2 thus it is important to have a good view on 

the concentrations NOx and with that on the concentrations NO2. The limit values for 

the concentration NO2 are given in Appendix 2 of 'Wet Milieubeheer' (Cramer, 2007). 

 

The Real Time URBIS model simulates the concentration NOx by adding emissions 

from different sources like traffic, residents, shipping and industry. In this report a 

Kalman filter will be used to link the model simulations with a series of measurements 

made on 9 different monitoring stations. With this link a better simulation for the 

concentration NOx can be given. Also a statistical uncertainty interval of the 

concentration NOx can be given. 

 

In Chapter 2, a more detailed explanation of the Real Time URBIS model is given. In 

Chapter 3, a statistical uncertainty analysis of the model is made; with this analysis 

some ideas for the Kalman filter are constructed. In Chapter 4, the general use of a 

Kalman filter is explained. In Chapter 5, the Kalman filter is applied on the background 

concentrations in the Real Time URBIS model. In Chapter 6, the Kalman filter is 

applied on all the different emission sources. In the last part of Chapter 6, the 

uncertainty intervals, calculated with the Kalman filter, will be connected with the 

population to give a functional application of this method. The conclusions and 

discussion are given in Chapter 7. 
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2 Model and measurements 

2.1 Real Time URBIS model 

Real Time URBIS is a model to determine the concentration NOx in a city or in an 

industrialized region. The model calculates on each hour a concentration NOx for the 

whole region, based on factors like wind, temperature and time. This study focuses on 

the Rijnmond area around Rotterdam; the domain of the study is shown Figure 2.1. 

 

The basis of the Real Time URBIS model is the URBIS model. The URBIS model 

calculates 88 annual mean concentrations NOx. These 88 annual mean concentrations 

are concentrations caused by 11 different emission sources for 4 different wind 

directions and 2 different wind speeds. Further in this report, the 88 annual mean 

concentrations are called standard concentration fields. Plots of all standard 

concentration fields are included in Appendix B. Detailed information about the URBIS 

model can be found in (Wesseling and Zandveld, 2003). 

 

With the Real Time URBIS model, the annual mean concentrations are used to 

calculate an hourly mean concentration. The state of the Real Time URBIS model 

consist the NOx concentrations in a large number of grid points in the domain. 

Mathematically, the state is described by a vector: 

 

 kc  (1) 

 

where k denotes the hour. In this study, the state vector is defined on about 94096 grid 

points covering the Rijnmond area, irregularly distributed over the grid. The state is 

computed as a linear combination of standard concentration fields. This is given in the 

state equation: 

 
Τ

=
kkc µM  (2) 

  

where each column of the matrix M is one of the standard concentration fields. The 

elements of vector µk represent the weights of each standard concentration field at hour 

k. The weights depends on the meteorological conditions (wind direction, wind speed, 

temperature) and the moment (month, day of the week, hour).  

 

In (Spaubek, 2004) and (Kranenburg, 2009) a more detailed description of the Real 

Time URBIS model can be found. Note that the Real Time URBIS model described in 

those reports has an underlying URBIS model valid for the year 2000, while in this 

report the underlying URBIS model is valid for the year 2006. This URBIS model for 

2006 has one large difference with the URBIS model for the year 2000. The model for 

2000 consists of 10 different source categories instead of 11 in 2006, since an extra 

source in category traffic is added, namely the source 'Zone card'. Further is the source 

category 'Boundary' renamed into 'Rest'. 
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2.2 Measurements 

In the Rijnmond area, there are also 11 monitoring stations, which monitors the 

concentrations NO and NO2. The sum of these two concentrations is called NOx. The 

locations of these 11 monitoring stations are also shown in Figure 2.1. Locations 1-6 are 

stations operated by DCMR
1
, the locations 7-11 are stations operated by RIVM

2
. 

Monitoring stations 6 and 11 are located directly next to each other, thus in the Real 

Time URBIS model both locations have the same coordinates. Only 9 of these locations 

are in the domain covered in this study, locations 7 (Schipluiden) and 10 (Westmaas) 

are just outside of the domain and will only be used as background stations. These 

stations monitor the concentration which is blown into the area from the rest of the 

Netherlands. As will described in Chapter 3, the results of the measurements on the 9 

locations inside the area can be used to estimate the uncertainty of the model, by 

comparing the model results with the results of the measurements. Further in this report 

the results of the measurements will be called observations.  

 
DCMR - Locations  RIVM - Locations 

1 Schiedam  7 Schipluiden 

2 Hoogvliet  8 Schiedamse Vest 

3 Maassluis  9 Vlaardingen 

4 Overschie  10 Westmaas 

5 Ridderkerk  11/6 Bentinckplein 

6 Bentinckplein    

     

Figure 2.1: Domain of the working area for Real Time URBIS 

                                                        
1 DCMR: Dienst Centraal Milieubeheer Rijnmond; www.dcmr.nl 

Environmental Protection Agency for the Rijnmond area around Rotterdam 
2 RIVM: RijksInstituut voor Volksgezondheid en Milieu 

Dutch institute for public health and environment  
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3 Statistical uncertainty of the Real Time URBIS model 

3.1 Introduction 

In (Kranenburg, 2009), a method is described to compute a bias correction for the 

simulations made by the Real Time URBIS model, by comparing the model simulations 

with the observations made on the 9 monitoring stations. After application of the Real 

Time URBIS model, the simulation is adjusted with a value dependent on the different 

meteorological conditions (wind direction, wind speed, temperature) and the moment 

(month, day of the week, hour). This correction is typically an example of post-

processing; after applying the model, the model results are corrected with the aid of the 

observations. In addition, with the dependencies on the meteorological conditions and 

the moment, the origin of the uncertainties in the Real Time URBIS model can be 

found. In this chapter, the same method is applied on the Real Time URBIS model with 

the underlying URBIS model for 2006. For the year 2006 all the differences between 

the observations and the model simulations are calculated. All these differences are 

used to make a correction on the results of the Real Time URBIS model. 

 

3.2 Log-normal distributions 

For all 9 monitoring stations in the area, the observations are plotted in a histogram. 

This is shown in the left panel of Figure 3.1. In the right panel of Figure 3.1, the model 

simulations for the locations of these monitoring stations are plotted in a histogram. For 

each location, the model simulation is made by a weighted average of the model 

simulations on the grid points within a fixed distance from that monitoring station. The 

grid can be split into two parts: one grid with distance between two grid points equal to 

100 meters and one special grid with a high resolution on busy local roads. Therefore 

the fixed distance to calculate the weighted average for each monitoring station will be 

equal to 150 meters. All 4 neighboring grid points from the first grid will then be 

involved in the weighted average. In Appendix A, the locations of all the monitoring 

stations are shown together with the surrounding grid points, which are involved in the 

weighted average. 

 

It is important to notice that both the observations as well as the model simulations have 

a log-normal distribution. For this reason all corrections should be done in the log-

domain. The main advantage of working in the log-domain is that, when a correction is 

added to the state, this correction is made on the logarithm of the concentration. After 

correction, the logarithm of the concentration could become negative but the 

corresponding concentration itself can not. In fact, an additive correction on the 

logarithm of the concentration is the same as a fractional correction on the absolute 

concentration:  

 

 

k

cc

k

kk

ceeec

cc

kk λλ

λ

=→=

+→

+)ln()ln(

)ln()ln(

 (3) 
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where ck is the concentration at time k and λ is the correction term. Since the correction 

factor e
λ
 is always positive, the concentrations will remain positive too. Detailed 

information about corrections in the log-domain is given in (Kranenburg, 2009). 

 

 
Figure 3.1: Both the observations and the model simulations have a log-normal distribution. 

 

3.3 Uncertainty of the Real Time URBIS model 

The method from (Kranenburg, 2009) to describe the uncertainty of the model is now 

applied on the Real Time URBIS model, with underlying URBIS model for 2006. For 

the year 2006 all logarithms of the observations made on the 9 monitoring locations are 

compared with logarithms of the model simulations. In total there are at most 9 stations 

× 8760 hours = 78840 of those differences. Due to some missing measurements or 

meteorological data, for 2006 there are only 67080 differences. With all these 

differences, the correction on the results of the Real Time URBIS model is made. 

 

3.3.1 Structural bias 

 

First the differences between the model results and the observations did not have mean 

zero, thus there is a systematical error in the model. This structural error causes a 

constant correction (λ = λc) of the logarithm of the model simulation, which 

corresponds with a constant fractional correction of the absolute model simulation. 

 

3.3.2 Wind direction dependency 

 

The differences between logarithms of the observations and the logarithms of the 

constant corrected simulations are plotted with respect to the wind direction. The wind 

directions are given by 10 degrees accurate, thus in total 36 wind directions are 

possible. For each wind direction, all differences which appear during that wind 

direction are taken. In Figure 3.2 all the means (λi) per wind direction are plotted as 

blue dots. The standard deviations (σi) of the differences per wind direction are 

represented by the length of the error bars. The values for λi and σi are given by:  
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where ni represents the number of differences that appears during wind direction i, 

while yi represents the observations and 
m

ic the model simulations, during wind 

direction i.  

  

The green line in Figure 3.2 forms the correction which is added to the logarithms of the 

model simulations. The correction on the model is now a function of the wind direction 

φ, thus λ = λc + λwdir(φ). This green line is a composed sinus function, which fits best on 

the differences between the model simulations and the observations. This best fitting is 

made with the blue dots and the wind rose in Figure 3.3; the weights for each blue dot 

are given in this wind rose. When a wind direction occurs a lot, the weight must be 

larger in the calculation of the best fitting sinus. 

 

Figure 3.2:  Mean differences between the logarithms of the observations and the logarithms of the model 

simulations against the wind direction after constant correction. 
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Figure 3.3: Wind rose over 2006 

3.3.3 Hour dependency 

 

After the correction on the wind direction, all the differences are plotted with respect to 

the hour of the day; this is shown in Figure 3.4. In this figure, the means of all 

differences per hour of the day are plotted with a blue dot and the standard deviations 

are represented by the widths of the error bars, computed similar to equations (4). The 

green line is again a composed sinus function, which fits best on the blue dots. Because 

of missing measurements or meteorological data, not every hour has the same 

contribution in calculating the best fitting sinus. This best fitting sinus forms the 

correction added to the logarithms of the model simulations as a function of the hour of 

the day. The total correction on the model is now built from three parts: a constant part, 

a function dependent on the wind direction (φ) and a function dependent on the hour of 

the day (h): λ = λc + λwdir(φ) + λhour(h). After this correction, the differences were 

plotted against the other input parameters wind speed, temperature, month and day of 

the week. It was found that the differences are no longer dependent on one of these 

input parameters. 
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Figure 3.4:  Mean difference between the logarithms of the observations and the logarithms of the model 

simulations against the hour of the day, after correction on the wind direction 

 

3.3.4 Standard deviation of the differences 

 

The standard deviation of the differences was found to be a function of the wind speed. 

This is shown in Figure 3.5. The blue dots represent the standard deviation of all 

differences as a function of wind speed. This is done with an equation similar to the 

second equation of (4). The red line is the best fitting exponential function on the 

standard deviations per wind speed. In the calculation of this best fitting exponential the 

number of times that a wind speed occurs is also taken. When a wind speed occurs a lot, 

the weight must be larger in the calculation of the best fitting exponential. 

 

Figure 3.5:  The standard deviations of the differences between the logarithms of the observations and the 

logarithms of the model simulations against the wind speed, after correction on the hour of the 

day 
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3.4 Discussion 

With the method described above, an uncertainty interval for the concentration NOx can 

be given. In Figure 3.6 the 1σ uncertainty interval for the first week of 2006 is given for 

the location of the monitoring station in Schiedam. The red dots represent the available 

observations made on the station in Schiedam. The described method gives a useful 

approximation of the uncertainty of the model; however the uncertainty of the model is 

very large at some times. 

 

The next object is to decrease the uncertainty of the model by an improvement of the 

model. An indication for the largest inaccuracy of the model is given by the uncertainty 

analysis above. The differences between the observations and the model simulations are 

mainly dependent on the wind direction. For this reason it is assumed that the standard 

concentration fields for the source 'Background' are not accurate in the URBIS model. 

The source 'Background' corresponds with emission produced in the rest of the country 

which is blown into the Rijnmond area. Of course this source has a large dependency on 

the wind direction. In Chapter 5, a Kalman filter will be used to get better estimates of 

the background concentrations per wind direction. The advantage of using a Kalman 

filter is that also the uncertainty of the measurements is involved in the estimation. First 

in Chapter 4, the working of a Kalman filter is explained. 

 

Figure 3.6: Uncertainty interval for the first week on location Schiedam 

 



 

 

 

TNO report | TNO-034-UT-2010-02193_RPT-ML  17 / 110

4 Kalman filter  

4.1 Introduction 

A Kalman filter is mostly used to smooth random errors in the model of a dynamical 

system. In Figure 4.1 a schematic representation of the working of a Kalman filter is 

given. The simulations made by the model for time step k are corrected with the aid of a 

measurement on time step k. In this correction, also the uncertainties of the model and 

the measurements are taken into account. This application is very useful in a real time 

application such as the Real Time URBIS model. Detailed information about a Kalman 

filter can be found in (Heemink, 1996) and (Welch and Bishop, 2006). 

 

 

Figure 4.1: Schematic representation of the Kalman filter 

 

4.2 Algorithm of Kalman filtering  

In this section the working of a Kalman filter is explained with a simple one 

dimensional example. The simulations made with the Real Time URBIS model, for 

location Schiedam are compared with the observations on location Schiedam. This is 

done for the year 2006, in this year the Real Time URBIS model gives for 7906 of the 

8760 hours a concentration NOx. For the other hours, one of the meteo input data is 

missing, thus the model cannot give a result. For 8603 of the 8760 hours there is an 

observation, on the other hours, the measurement was incorrect or missing. When the 

model does not give a result, the Kalman filter cannot give a result on that time step. 

When there is no measurement, the Kalman filter can give a result, which is computed 

from the previous time step. In the figures in this chapter there will be some 'holes', 

these are due to the missing model data. 
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4.2.1 Dynamical system 

 

First of all it is important to have a well defined dynamical system. For the example in 

Schiedam, this dynamical system is given by: 

 

 
)1,0(~

)ln()ln(

1 Ν+=

+=

+ kkkkk

k

m

kk cc

ωωβαλλ

λ
 (5) 

 

In these equations the value ck is the concentration of NOx on time step k on location 

Schiedam. Every time step the Real Time URBIS model calculates a concentration NOx 

on location Schiedam; these are called
m

kc . Because of the log-normal distribution of 

the concentration NOx, the dynamical system deals with the logarithms of the 

concentration NOx. More about this is discussed in Section 3.2 and in (Kranenburg, 

2009). The parameter γk is an estimate for the difference between the logarithm of the 

real concentration and the logarithm of the model result, also called the perturbation on 

the model. With a Kalman filter these perturbations γk will be estimated.  

 

This estimation does not lead to a computation of the optimal value for γk. Instead the 

result after application of the Kalman filter is that the value of γk can be found in a 

Gaussian distribution with mean kγ̂ and a variance
2

kp . With this Gaussian distribution, 

the value for ln(ck) can be found in a Gaussian distribution with mean k

m

kc γ̂)ln( + and 

variance
2

kp . This all leads to an uncertainty interval for the logarithm of the 

concentration NOx at every time step and with that, an uncertainty interval for the 

absolute concentration NOx. 

 

For the perturbations, it is assumed that a perturbation at time k is correlated with the 

perturbation on time k-1, but that it also has a random component. A suitable 

mathematical description is an 'AR1' (auto-regressive 1) process, this is also called 

'colored noise'. The temporal correlation is described by the parameter α, which also 

appears in the formula for the amplitude of the random contribution: 

 

 kk σαβ 21−=  (6) 

 

When α = 0, the perturbation only has the random process, thus only white noise with 

standard deviation σ. 

 

When α is close to one, the temporal correlation is strong and the fluctuations per time 

step are small. The value α is computed from: 

 

 
τα /1

e=  (7) 

 

where τ is a de-correlation scale. In this example the value of τ is chosen equal to 12, 

such that the perturbation is practically independent of the perturbation 12 time steps 

before. 
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4.2.2 Kalman filter form 

 

For application of the Kalman filter, the dynamical system has to be written in the 

Kalman filter form: 

 

 

),0(~))(ln()ln(

)1,0(~

2

1

kkkk

m

kk

kkkkk

rNcHy ννγ

ωωβαγγ

++=

Ν+=+

 (8) 

 

In here yk is the observation on time step k, and H is the system operator, which projects 

the model state onto the observations. The observation error νk represents the error of 

the measurement, combined the instrumental error and the representation error, which is 

supposed to be Gaussian with zero mean and variance
2

kr . 

 

For the example on location Schiedam, the system operator H is equal to 1, which 

means that the observation is just the model plus some perturbation. The value of rk is 

assumed to be equal to 0.2. This means that the logarithms of the observations have an 

uncertainty of 20%. Also the value σk is set to 0.2, which means that the perturbation on 

the model also has an uncertainty of 20 %. 

 

The Kalman filter process could be started with initial values γ0 = 0, and 
2

0p  = 0; this is 

equivalent to the assumption that the expected concentration at time 0 equals the model 

result and the uncertainty is zero at this time. 

 

4.2.3 Forecast step 

 

In the first step of the Kalman filter, a forecasted mean 
f

kγ̂ of the perturbation is 

calculated with the mean from the previous time step. This forecasted mean is the 

expectation of γk:  
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where is used that E[ωk] = 0. For the example of Schiedam the temporal correlation is 

stated: 

 92.012/1 == −
eα  

 

Also a forecasted variance 
2

1)( f

kp + is calculated with the variance from the time step 

before:  
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where the independency of γk and ωk is used, as well as E[ωk] = 0 and 

1)(][ 2 ==Ε kk VAR ωω . 

4.2.4 Analysis step  

 

In the second step, the Kalman filter analyzes the results of the forecast step with an 

observation. A basic assumption in a Kalman filter is that the mean after the analyzing 

step
a

kγ̂  is a linear combination of the forecasted mean and the difference between the 

logarithm of the observation and the logarithm of the model simulation. This result in 

an analyzed mean which is the forecasted mean plus a perturbation relative to the 

difference between the observation and its related simulation:  

 

 ))ˆ)(ln()(ln(ˆˆ
111111

f

k

m

kkk

f

k

a

k cHyK ++++++ +−+= γγγ  (11) 

 

The variance in this analyzing step 
2

1)( a

kp +  is created by the variance from the forecast 

step and the variance from the representation error of the measurements: 
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where the independency of γk and νk is used, as well as E[νk+1] = 0 and 1][ 2

1 =Ε +kν . In 

the fifth line of (12), the second equation of (8) is used.  

 

After this analyzing step, the values for 
a

kγ̂  and 
2)( a

kp are the mean kγ̂ and the 

variance 
2

kp  for the state of the system on time k.  

A common choice for Kk is the minimum variance gain. For that gain, the value Kk is 

chosen such that the variance 
2)( a

kp  reaches a minimum. To obtain the minimum 

variance, the solution for Kk of  
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has to be found. This is done in the next formula: 
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Because of the second derivative 
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this extreme corresponds with a minimum. 

 

If this minimal variance gain is used in the expression for the variance after the analysis 

step, this expression can be simplified to: 
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11
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1 ))(1()( f

kk

a

k pHKp +++ −=  (16) 

 

4.2.5 Simple example of Kalman filtering 

 

All steps of the Kalman filter are applied on location Schiedam for the first week of 

2006. Figure 2.1 shows for the first week of 2006 all the model simulations and 

observations. At every hour the logarithm of the model result is shown together with the 

logarithm of the observation.  

 

Figure 4.2:  Logarithms of the model simulations and the observations for the first week of 2006 on the  

monitoring station in Schiedam 

 

In Figure 4.3 all steps of the Kalman filter are applied on the model results and the 

observations for the first week of 2006. The logarithm of the real concentration can be 

found in a Gaussian distribution. The 1σ interval is given by the blue lines, this interval 

corresponds with: 

 

 ]ˆresult) modelln(,ˆresult) model[ln( pp ++−+ γγ  (17) 

 

where γ̂  is the mean after the Kalman filter and p corresponds with the square root of 

the variance after the Kalman filter. It is clear that in this case the uncertainty interval is 

mostly between the model result and the observation. In Section 4.3, it will be shown 

how this interval depends on the several input parameters r
2
, α and σ

2
.  
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Figure 4.3: Kalman filter applied on the first week of 2006 on location Schiedam 

 

 

In Figure 4.4, it is shown what happens when there is a certain period without 

observations. When there is no observation, only the forecast step of the Kalman filter 

is used. The mean value γ̂  tends to the model results and the standard deviation p tends 

to the standard deviation of the model.  

 

In the left panel of Figure 4.4 there are no observations analyzed, thus the uncertainty 

interval tends to be around the model and the width of the interval corresponds with the 

standard deviation of the model. In the right panel there are no observations analyzed 

between time step 15 and time step 90. Between those time steps the uncertainty 

interval after the Kalman filter tends to the model. After time step 90, the Kalman filter 

analyzes the observations again and the intervals are again between the model results 

and the observations.  

 

In Figure 4.5 this phenomenon is better visible. In this figure, the differences between 

the model result and the measurement outcomes are shown, with black dots. The 

intervals in this figure are just the intervals ]ˆ,ˆ[ pp +− γγ . When there are no 

measurements in the analysis step, the mean of the interval tends to zero and the width 

of the interval corresponds with the variance of the model. If the observations are 

analyzed again the mean of the interval lies between zero and the black dots. 
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Figure 4.4:  Kalman filter applied on the first week of 2006 on location Schiedam, In the left panel there are 

no measurements in the analysis step. In the right panel there are no measurements in the 

analysis step between time steps 15 and 90 

 

 

Figure 4.5:  Uncertainty intervals of the perturbations, the black dots are the differences between the 

outcomes of the measurements and the model. In the left panel there are no measurements in 

the analysis step. In the right panel there are no measurements in the analysis step between time 

steps 15 and 90 

4.3 Sensitivity tests 

In this example for Schiedam, some parameters can be changed to get a better view on 

their influence. When some parameters are changed the behavior of the Kalman filter is 

different.  

 

4.3.1 Uncertainty of measurements (r
2
) 

 

The first parameter to change is the uncertainty of the measurements (r
2
). In Figure 4.6, 

it is shown what happened when there is respectively a small and a large uncertainty. 

The left panel of Figure 4.6 shows that if the uncertainty is small, the interval after the 

Kalman filter is close around the measurements. The width of this interval is also small, 

due to the small uncertainty of the measurements. The right panel in Figure 4.6 shows 

that, when the measurements have large uncertainty, the interval after the Kalman filter 

is around the model results. The width of the interval is approximately as large as the 

uncertainty of the model. 
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Figure 4.6:  Kalman filter applied on first week for location Schiedam with uncertainty of the 

measurements assumed small r = 2% (left panel) and large r = 200% (right panel) 

 

4.3.2 Temporal correlation parameter (α) 

 

The second parameter to change is the temporal correlation parameter α. In Figure 4.7, 

the intervals of the perturbations are shown. In the left figure τ = 1, thus α = e
-1/τ

 ≈ 0.37, 

in the right figure τ = 250, thus α = e
-1/τ

 ≈ 1.00. The left panel of Figure 4.7 shows that, 

when α is small, there is hardly any temporal correlation. It is possible to get high 

fluctuations of the interval. If there are no observations analyzed from time step 15 till 

time step 90, the mean of the perturbation will tend rapidly to zero; the width of the 

interval will rapidly tend to the uncertainty of the model. The right panel of Figure 4.7 

shows that if α is large, the temporal correlation is large and the interval does not make 

large fluctuations. For that reason the mean of the interval will tend slowly to 0 when 

there are no measurements analyzed from time step 15 till time step 90. Also the width 

of the interval will tend slowly to the width corresponding with the uncertainty of the 

model. 

 

Figure 4.7:  Uncertainty interval for the perturbation for location Schiedam for the first week of 2006, with 

time correlation assumes small α ≈ 0.37 in the left panel and large α ≈ 1.00 in the right panel. 

 

4.3.3 Uncertainty of the model (σ) 

 

The last parameter to change is the uncertainty of the model σk. Figure 4.8, it is shown 

what happens when there is respectively a small and a large model uncertainty. In the 

left panel of Figure 4.8, the Kalman filter is applied with relatively small model 

uncertainty. The interval after the Kalman filter mostly follows the model and the width 

of the interval is also small because of the small uncertainty of the model. The right 
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panel of Figure 4.8 shows the uncertainty interval when the model uncertainty is 

relatively high. The interval is close around the observations, while the width of the 

interval corresponds with the uncertainty of the measurements. 

 

 

Figure 4.8: Kalman filter applied on the first week of 2006 for location Schiedam, with model uncertainty 

assumed small σk = 2% in the left panel and large σk = 200% in the right panel 

 

4.4 Higher dimensional Kalman filtering 

The algorithm described in Section 4.2 is an algorithm for a one dimensional problem. 

This algorithm can easily be extended to a higher dimensional problem. This is also 

explained with an example of the Real Time URBIS model. In the Rijnmond area there 

are 9 locations where the concentration NOx is measured. On each of these 9 locations 

there is a real concentration NOx called ck (vector of length 9). Also the Real Time 

URBIS model gives for every hour a concentration NOx on each location, called
m

kc . 

Again it is necessary to work in the log-domain, thus 
k

γ is the perturbation on the 

model to estimate the real concentrations. 

 

4.4.1 Dynamical system 

 

The dynamical system of this problem: 
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 (18) 

 

where ln(ck) stands for a vector with logarithms of the concentrations. 

 

The dynamical system has become a matrix-vector equation, where matrix A replaces α 

as time correlation parameter. In the example over all locations A is a diagonal matrix 

with time correlations αi on the diagonal representing the temporal correlations for each 

entry of
k

γ . Qk is a covariance matrix, built from the temporal correlation and the 

uncertainty of the model. The matrix Q is diagonal with elements
222 )1( iiiq σα−= . 
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4.4.2 Kalman filter form 

 

The dynamical system has to be written in Kalman filter form: 
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 (19) 

 

where Rk is a covariance matrix with uncertainty of the measurements. The matrix Rk is 

also a diagonal matrix with elements
2

ir , the uncertainty of each entry of the vector with 

observations ln(yk), H is now a higher dimensional system operator, which projects the 

model state onto the measurement outcomes.  

 

The result after the Kalman filter is again that the vector γk can be found in a Gaussian 

distribution with mean 
k

γ~ and covariance matrix Pk. With this Gaussian distribution, 

the logarithm of the concentration NOx can be found in a Gaussian distribution with 

mean )~)(ln(
k

m

kc γ+  and covariance matrix Pk. The value for the mean of γk, called 

k
γ̂ is simply E[γk]. Pk is a covariance matrix with covariances between the entries of 

state vector γk. On the main diagonal of a covariance matrix are variances. From this 

diagonal, the uncertainty interval for each entry of γk can be computed by taking the 

square root of these variances. 

 

4.4.3 Forecast step 

 

In the forecast step the mean
f

k 1
ˆ

+
γ  is computed with the mean 

k
γ̂  from the time step 

before: 
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where is used that E[ωk] = 0. 

 

The covariance matrix 
f

kP 1+ of γk is as in one dimension a function of the covariance 

matrix from the time step before: 
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where the independency of ωk and γk is used, as well as E[ωk] = 0 and COV(ωk) = Qk.  

 

4.4.4 Analysis step  

 

In the analysis step the results of the forecast step are analyzed with a series of 

observations. The mean from the forecast step is analyzed with a linear Kalman gain K, 

such that the mean after the analysis step is similar with the one dimensional case:  
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The covariance matrix after the analyzing step is as in the one dimensional case, a 

function of the covariance matrix from the forecast step: 

 

]))ˆ)(((

))ˆ)([((

])))ˆ)(ln(

))(ln((ˆ(

)))ˆ)(ln(

))(ln((ˆ[(

]))))ˆ)(ln()(ln(ˆ((

))))ˆ)(ln()(ln(ˆ([(

]))([(

]])[])([[(

)(

11111

11111

11

111111

11

111111

111111

111111

1111

1111

11

Τ
+++++

+++++

Τ

++

++++++

++

++++++

Τ

++−+++

++−+++

Τ

++++

Τ

++++

++

−−−

−−−Ε=

+−

++−−

+−

++−−Ε=

+−+−

+−+−Ε=

−−Ε=

Ε−Ε−Ε=

=

kk

f

kkk

kk

f

kkk

f

k

m

k

kk

m

kk

f

kk

f

k

m

k

kk

m

kk

f

kk

f

k

m

kkk

f

kk

f

k

m

kkk

f

kk

a

kk

a

kk

kkkk

k

a

k

KHKI

KHKI

cH

cHK

cH

cHK

cHyK

cHyK

COVP

νγγ

νγγ

γ

νγγγ

γ

νγγγ

γγγ

γγγ

γγγγ

γγγγ

γ

 (23) 



 

 

 

TNO report | TNO-034-UT-2010-02193_RPT-ML  29 / 110

Τ
+++

Τ
+++

Τ
+++

Τ
+++

Τ
+

Τ

+++

Τ
+

Τ

+++++

Τ
+

Τ

+++

Τ
+

Τ

++++

Τ
+

Τ

++++

Τ
+

Τ

+++++

+−−=

+−−=

Ε+

−Ε−Ε−Ε−=

Ε+

−−Ε−

−−Ε−

−−−−Ε=

111111

111111

1111

111111

1111

11111

11111

111111

)()(

)())(()(

][

)(])[])([[()(

][

])()ˆ([

])ˆ)([(

])()ˆ)(ˆ)([(

kkkk

f

kk

kkkkkk

kkkk

kkkkkk

kkkk

k

f

kkkk

kk

f

kkk

k

f

kk

f

kkk

KRKHKIPHKI

KCOVKHKICOVHKI

KK

HKIHKI

KK

HKIK

KHKI

HKIHKI

νγ

νν

γγγγ

νν

γγν

νγγ

γγγγ

 

 

where the independency of γk and νk is used, as well as E[νk] = 0 and COV(νk ) = Rk. 

 

Also in this higher dimensional problem it is common use to take for Kk the gain that 

minimizes the variance 
a

kP in l
2
 norm. This gain is expressed similar to the one 

dimensional case:  
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kk RHHPHPK  (24) 

 

As in the one-dimensional case, the expression for the covariance matrix can be 

simplified to: 
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kk
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k PHKIP 111 )( +++ −=  (25) 

 

More information about higher dimensional Kalman filtering can be found in (Segers, 

2002) 



 

 

30 /110  TNO report | TNO-034-UT-2010-02193_RPT-ML

 

 



 

 

 

TNO report | TNO-034-UT-2010-02193_RPT-ML  31 / 110

5 Kalman filter on background concentrations  

5.1 Introduction 

As described in Section 2.1, the mathematical description of the Real time URBIS 

model is: 

 

 
Τ

=
k

m

k Mc µ  (26) 

 

The value 
m

kc  is the concentration NOx calculated by the model, while each column of 

M corresponds with a standard concentration field, computed by the URBIS model, 

shown in Appendix B. The vector µk represents the weight for every standard 

concentration field on time k.  

 

In Chapter 3, the comparison between the model simulations and the observations 

shows that the model simulations have some inaccuracies. In that chapter, it was shown 

that the differences between the model simulations and the observations depend on the 

wind direction and the wind speed. This analysis is done for all stations, thus it is 

assumed that the dependency on the wind direction is the same for the whole area. It is 

possible that the dependency on the wind direction is caused by an inaccurate local 

emission source, but it is not likely that an inaccurate local emission source influences 

all stations.  

 

The figures in Appendix B shows that the standard concentration fields for the emission 

source 'Background' are the same for every wind direction and wind speed. This is 

contradicting with the ideas of Chapter 3. Therefore the emission from source 

'Background' is marked as the inaccurate emission source. This source is typically a 

source that has to be dependent of the wind direction and the wind speed.  

 

It is likely that the wind dependency found in Chapter 3, is caused by the lack of wind 

dependency in the source 'Background' in the URBIS model. In this chapter the 

standard concentration fields for this emission source will be corrected with a Kalman 

filter. The idea is that the correction is dependent on the wind direction and the wind 

speed. 

 

Figure 3.2 gives an idea of how the standard concentration fields have to be corrected. 

When the wind is from direction north-west the model simulation is too high, thus the 

concentration fields from directions west and north have to be lower. When the wind is 

from direction south-east, the model simulation is too low, thus the standard 

concentration field from directions east and south has to be higher. Figure 3.5 gives the 

idea is that when the wind speed is high, the concentration is lower because of a larger 

dilution of the emission. 

 

This application of the Kalman filter will also lead to an uncertainty interval of the total 

concentration NOx for every time and location in the Rijnmond area. 
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5.2 Kalman filter 

To make a correction on the standard concentration fields, every field gets a correction 

factor kie ,γ
for each hour k. These factors are larger then zero, thus there is no problem 

with negative concentrations. Adding these corrections to the model from Equation (26) 

leads to the following equation for the corrected model: 
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ikik
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µ  (27) 

 

In this equation vectors mi are the columns of M, representing the standard 

concentration fields. In the log-normal distribution the expected concentration E[ck] is 

given by: 
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where ki ,γ̂  is the median of γi,k and kip ,
ˆ is the standard deviation of each entry of γi,k. 

 

5.2.1 Dynamical system 

 

In Chapter 3, the idea is that the background concentrations are not accurate in the 

model. The other fields were supposed to be good enough, thus the correction factor on 

those fields are stated equal to one (γi = 0) for i=9...88. This leads to the following 

expression: 
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The vectors mi for i=1...8 corresponds with the standard concentration fields for the 

source: 'Background', these fields have a correction kie ,γ
. The second term of Equation 

(29) is not dependent of any γi, thus a constant called
dm

kc
,

. This constant describes the 

model simulation for all sources, different from the source 'Background': 
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Because of the log-normal distribution of the model simulations, a transformation to the 

logarithms of the simulations is required: 
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This is a non-linear equation for γk. The Kalman filter requires a linear model, therefore 

a linearization of this equation is made around γk = 0: 
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where 
bm

kc
,

 is the concentration calculated by the model for the source: 'Background':  
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In Equation (32), the quotient of two vectors is defined as the element wise quotient. 

 

The dynamical system for the background concentration will then become the 

following: 
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The first equation is the linearization of the equation for the logarithm of the 

concentration, the second equation is the auto-correlation process for the series of 

perturbations{ } nk

kk

=

=1
γ , with n=8760, the number of hours in a year. In the Kalman filter, 

an estimate of the uncertainty interval of the vector γk will be found. This uncertainty 

interval of γk will then be used to get a better uncertainty interval for the total 

concentration at time k.  

 

The interpretation of the dynamical system is now that the logarithm of the real 

concentration is the logarithm of the model simulation plus a correction on the 

background. The correction on the background is a temporal correlated process; the 

temporal correlation is calculated in Section 5.4. The covariance matrix Q is assumed to 

be independent from time and this matrix is built from the temporal correlation and the 

model uncertainty. Matrix Q is a diagonal matrix with on the main diagonal 

elements
2

iq . This is a colored noised process driven by a white noise process, assuming 

that both the temporal correlation and the uncertainty of the model are independent of 

time:  

 iiiq σα 21−=  (35) 

where σi corresponds with the overall uncertainty of the perturbations. 

 

5.2.2 Kalman filter form 

 

The dynamical system in Equation (34) has to be written in a Kalman filter form. There 

are 9 series of observations y, which are made on the 9 monitoring stations in the 

domain. This series of observations have to be compared with the model results.  

 

This leads to the following system of equations in Kalman filter form: 
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Matrix H is the system operator which projects the model state onto the observations. 

The covariance matrix R represents the uncertainty of the logarithms of the 

observations, combined the instrumental error and the representation error. This matrix 

R is a diagonal matrix with diagonal elements
2

ir , the values for ri will be estimated in 

Section 5.3. To simplify notations, the system is rewritten to: 
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where vector 
k

y~ and matrix kH
~

 are defined by: 
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5.2.3 Forecast of background correction 

 

On this Kalman filter form the algorithm for the Kalman filter can be applied. The 

forecast step gives then the following formulas for the expected median
f

k
γ̂ and the 

variance 
f

kP of γk: 
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5.2.4 Analysis of background correction 

 

In the analyzing step, the filter makes a comparison with a series of observations, in this 

case 9 observations per time step for the 9 monitoring stations in the domain. This leads 

to the following formulas for the expected median 
a

k
γ̂ and variance 

a

kP of γk: 
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where Kk+1 is the Kalman gain that minimizes the variance 
a

kP 1+ . This Kalman gain is 

given by: 

 

 
1)

~~
(

~ −ΤΤ += kk

f

kkk

f

kk RHPHHPK  (41) 

 

The values 
a

γ̂  and
a

kP , are stated as the mean and the covariance matrix for γ on time 

step k, and will be used as input for the next time step. 

 

5.3 Uncertainty of the observations 

The observation error (R in Equation (36)) is an important parameter in the Kalman 

filter. Section 4.3 shows the influence on the solution when parameter r
2
 is changed. 

Because of R is built from all
2

ir , the observation errors of each entry of the 

observation, the influence of covariance matrix R is also large.  

 

The uncertainty of the measurements is assumed to be the square of a percentage (refract) 

of the outcome of the measurement: 

 

 
2

,

2

, kifrackii yrR =  (42) 

 

where rfrac will contain both the instrumental error and the representation error. 

 

At location Bentinckplein in Rotterdam, two monitoring stations are located directly 

next to each other, one station from DCMR and one from RIVM. With the two series of 

observations made on these two stations, an indication of the instrumental error can be 

found. In Figure 5.1 the logarithms of the observations made on these two stations are 

shown in a scatter plot. An assumption for the logarithm of the real concentration at this 

location is the mean of the logarithms of the two observations:  
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where
r

ky  is the real concentration at time k and yk, zk are respectively the observations 

on the DCMR and the RIVM station.  

 

In Figure 5.2, a histogram with differences between the logarithms of the observations 

at the DCMR station and the assumed logarithms of the real concentrations is shown. 

The red line is the probability density function of the normal distribution with mean 0 

and standard deviation 0.08, this standard deviation is the same as the standard 

deviation of the differences plotted in the histogram.  

 

The peak of the histogram is not located on zero, which means that the annual mean 

concentration is not the same on both stations. The annual mean on the RIVM station is 

larger than the annual mean on the DCMR station. Although the normal distribution did 

not fit very well with the histogram, the assumption that the differences are normal 

distributed with standard deviation 0.08 is at least a good approximation. This 
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corresponds with an uncertainty of the logarithm of the measurements of 8 %. This will 

be used as an estimate for the instrumental error in rfrac, a random noise on the 

observation. The histogram for the RIVM station is the same as for the DCMR station, 

but then the negative version so that the histogram is mirrored in the y-axis. 

 

The contribution of the representation error is not easy to calculate, this will be done by 

a method of trial and error. The Kalman filter will be applied with different values for 

rfrac > 0.08 to obtain the optimal value for rfrac. 

 

The last assumption is that the observation error is the same for all stations, and not 

correlated between the stations. The matrix R is then a diagonal matrix with on the main 

diagonal elements
2

jfrac yr . 

 

 

Figure 5.1: The logarithms of the observations of the two monitoring stations at location Bentinckplein 
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Figure 5.2:  Histogram of the differences between the logarithms of the observations and the assumed 

logarithm of the real concentration at location Bentinckplein. The red line is the probability 

density function of the normal distribution with mean zero and standard deviation 0.08. 

 

5.4 Temporal correlation parameter 

Another important parameter is the temporal correlation. In the dynamical system given 

by Equation (34), the matrix A contains the temporal correlation parameters αi,j for the 

perturbation on the logarithm of the several background concentrations. The monitoring 

stations in Schipluiden and Westmaas, numbers 7 and 10 in Figure 2.1, are two stations 

which are located far away from industry sources or main roads. These locations are 

chosen to obtain estimates of the background concentrations. With the observations 

made on these stations, it is possible to get an estimate for the temporal correlation 

parameters.  

 

In general, the correlation (ρ) between two series of measurements 
n

iiy 1}{ =  and 
n

iiz 1}{ =  

could be computed with the following formula: 
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where zy,  are the mean of the series 
n

iiy 1}{ =  and 
n

iiz 1}{ = , and σy, σz are the standard 

deviations of the series 
n

iiy 1}{ =  and 
n

iiz 1}{ = .  

 

Assumed is that there is no correlation between the perturbations from different wind 

directions and wind speeds. The matrix A will then be a diagonal matrix with on the 

main diagonal elements αi. An estimate for αi is made with Equation (44) from two 

series of measurements 
mn

kkz
−
=1}{  and

n

mkkz =}{ , where zk is the difference between the 

logarithm of the observation and the logarithm of the model simulation at time step k on 

location Schipluiden: 
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 )ln()ln( m

kkk cyz −=  (45) 

 

Another estimate for αi is made with the differences on location Westmaas. For both 

locations this is done for m∈[0,60].  

 

Both locations Westmaas and Schipluiden are outside the model domain, thus there is 

no model simulation. Because of both stations are assumed to be background stations, 

the concentration is caused mainly by the background. This background is assumed 

constant, therefore the calculation of the correlation could be done with zk = ln(yk).  

 

For every period, the correlation is calculated for the perturbation on time k compared 

with the perturbation on time k+m. In Figure 5.3 these correlations are plotted with 

respect to the period m. This figure shows some peaks at period 24 hours, and period 48 

hours. This means that the correlation has a daily pattern. This is a reasonable idea, 

because it is expected that the emission in Schipluiden and Westmaas is mostly 

produced by people living in Schipluiden and Westmaas. 

 

A reasonable assumption is that the concentration on time step k does not depend on the 

concentration on time k-m when m is large. Therefore the correlation between the 

perturbation on time k and the perturbation on time k+m should go to zero when m → 

∞. Mathematically there is a correlation between the concentration on time step k and 

time step k+m, this can be understood by the time patterns in the emission and diurnal 

cycles in meteorological parameters. For example the concentration on Monday at 

08:00 in the morning is roughly the same as the concentration at Tuesday 08:00 in the 

morning. Mathematically this gives a high temporal correlation for ∆t = 24, but 

physically this concentrations are not related. For that reason it is only important to look 

at the temporal correlation for a few hours. 

 

In Figure 5.3, a fitting exponential function is drawn for the first few periods. In this 

case the formula for this function is α(∆t) = e
-∆t/12

. The de-correlation parameter τ = 12 

gives the idea that the concentration on time k+12 is not dependent on the concentration 

at time k. 

 

Finally this de-correlation parameter τ = 12 must be seen as an estimate. This estimate 

is obtained with varying wind speeds and wind directions. When the wind is with 

constant speed from the same direction, the correlation is perhaps different. In the 

application an optimal value for each αi will be found by testing the Kalman filter with 

different values for each αi. 
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Figure 5.3:  The temporal correlation for background stations Schipluiden and Westmaas. The black line 

corresponds with correlation α(∆t) = e-∆t/12  

5.5 Kalman filter runs 

The application of the Kalman filter, assuming the model uncertainty σ equal to 0.4, 

leads to a calculation of 
k

γ̂ , the expected median of vector γk and Pk the covariance 

matrix of vector γk at every time step k. In this application the vector γ represents the 

perturbations on the logarithms of the background concentration for four different wind 

directions and two different wind speeds. 

 

For the first week of 2006, the 1σ intervals of these eight perturbations are given in 

Figure 5.4. On every time step the weight µi,k for a standard concentration field is 

different, the values for µi,k are also given in Figure 5.4. When the contribution of a 

standard concentration field is high, the change in the correction factor γi is also high. If 

for a longer period a standard concentration field has no contribution, the mean of the 

correction factor γi tends to zero.  

 

An interesting aspect of this result is that the values for γi are relatively high for some 

time steps; this means that the background concentration receives a relatively high 

correction factor for that time step. This is due to the fact that in this application it is 

assumed that the difference between the observation and the model simulation is 

completely depending on the background concentration. A better assumption is that 

when the difference between the observation and the model simulation is large, that 

there are some other errors in the model.  

 

Another aspect is that the linearization of the dynamical system around γ = 0 has 

accuracy O(γ · γ), when γ become large the accuracy of the linearization decreases 

quadratically. For those reasons a screening process is implemented in the Kalman 

filter. When the difference between the observation and the model simulation is too 

large, the analysis step will not (or partly) be executed. The result is that the values for 

γi are limited. This screening process is explained in Section 5.6.  

 



 

 

40 /110  TNO report | TNO-034-UT-2010-02193_RPT-ML

 

In Figure 5.5, the problems with large values for γi are shown. In this figure, at every 

time step the concentrations are calculated with the values for γi and with Equations 

(27) and (29). In each figure the yellow line represents the largest contribution on the 

correction of the background )max( ,

,
kieki

γ
µ for every times step k. In these figures it is 

clear that the concentrations after applying the Kalman filter are not accurate in the 

regions where the values for γi become large. 

 

 

 

Figure 5.4:  Uncertainty intervals for the correction factors γi, together with the weights for each standard 

concentration field, for the first week of 2006 
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Figure 5.5:  Concentrations for the first week of 2006 after application of the Kalman filter on the 

background concentrations, for locations Schiedam and Overschie. 

 

5.6 Screening process 

As mentioned in Section 5.5, for some time steps the difference between the 

observation and the model simulation can not only be explained by inaccuracies of the 

background concentrations. For that reason, a screening process is implemented in the 

Kalman filter. If the difference between the observation and the forecasted 

concentration is too high, the difference between the observation and the model 

simulation is not only caused by the inaccurate background, but also by some other 

sources or incidental occasions. If this situation occurs, the analysis step will only be 

executed on the observations which are close to the forecasted mean, such that the 

values for γi will stay small. The result is that the background concentrations will not 

get large correction factors and the linearization still has good accuracy. It is also 

important to have a view on which observations are screened; this could give an idea of 

other inaccuracies in the model. For example, if many observations are screened in the 

weekend, the model has large uncertainty in the weekend. More information about a 

screening process in a Kalman filter can be found in (de Haan et al., 1999). 

 

To implement a screening process, a criterion has to be made, whether a difference 

between an observation and a model simulation is too high. For the Kalman filter on the 

background concentration the assumption is the following: 
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In here, Pabs,k and Rabs,k represents the variance for respectively the model simulations 

and the observations. The variance for the model is not known explicitly, due to the log-

normal distribution. Therefore this variance is assumed to be equal to the square of the 

difference between the upper band and the median of the 1σ interval of the 

concentration. The variance of the observations corresponds with the uncertainty of the 

measurements, rfrac > 0.08. Thus Pabs,k and Rabs,k are calculated as follows:  
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where
f

kip ,  is the standard deviation of 
f

ki ,γ . With the assumption from Equation (46) a 

criterion is chosen whether an observation is 'good' enough: 
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The parameter β defines the screening criterion. If the square of a difference is more 

than β
2
 times the variance of model simulation plus the variance of the observations, the 

observation does not fit on the assumption that the difference is only caused by the 

inaccuracy of the background. In that case the observation is not involved in the 

analysis step. This is a vector inequality, which means that if for an entry of both 

vectors this inequality holds, the observation corresponding with that entry is not 

involved in the analysis step. 

 

This screening process is implemented in the Kalman filter with parameter β = 2, this 

means that the square of a difference may not be larger than 4 times the sum of 

variations. The value β = 2 is chosen because in the normal distribution approximately 

95% of the data lies in the 2σ interval. 

 

The application of the Kalman filter with this screening process results in 

concentrations for Schiedam and Overschie for the first week of 2006, as shown in 

Figure 5.6. The largest correction )max( ,

,
kieki

γ
µ become much smaller and the 

concentrations have fewer extremes. In these figures, it is also shown that a lot of 

observations are not taken into account during the analysis step. About 68% of the 

observations are not taken into the analysis step.  

 

A possibility is that the temporal correlation is too large, a large temporal correlation in 

the Kalman filter leads to a result without large fluctuations in the concentration. When 

the observations have large fluctuations, it is possible that many observations will be 

screened. If the temporal correlation is set with de-correlation parameter τ = 1, there are 

still 66% of the observations, which are not taken into account during the analysis step. 

So it is not expected that the large number of screened observations is caused by a large 

temporal correlation. 

 

Another idea is that the differences are not completely caused by the inaccuracy of the 

background concentrations. In Chapter 6, the Kalman filter will be applied on all the 

different emission sources, to get a better estimate of all the different concentration 

fields of the URBIS model. The idea is that the large differences between the 

observations and the simulations are caused by inaccuracies of one of the standard 

concentration fields. 
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Figure 5.6:  Concentrations for the first week of 2006 after application of the Kalman filter on the 

background concentrations, with a screening process, at locations Schiedam and Overschie 

 

5.7 Discussion 

The ideas from Chapter 3 were that the differences between the model simulations and 

the observations are caused by inaccuracies of the source 'Background'. In this chapter, 

it is shown that this assumption does not hold for most of the differences. A correction 

on this source is not sufficient to eliminate the most of the differences between the 

model simulations and the observations made on the 9 monitoring stations.  

 

With the corrections made on the background, it is possible to create better standard 

concentration fields. Because of the large number of measurements which are not 

involved in the Kalman filter process, it is not expected that the new standard 

concentration fields for the background will be very accurate. For that reason, the 

Kalman filter will be applied to all different emission sources to get a 'better' standard 

concentration field for every source. This application will be explained in Chapter 6, 

together with the different runs to obtain the optimal values for each αi, σi and R. 
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6 Kalman filter on all emission sources 

6.1 Introduction 

In Chapter 5, it is shown that a correction on the background concentrations leads to a 

better estimate of the real concentrations for only a small number of time steps. For the 

other time steps, the Kalman filter does not give a correction on the background because 

the difference between the observation and the model simulation is not only caused by 

the inaccurate background.  

 

Therefore an additional analysis on the differences between the observations and the 

model simulations is made. In Figure 6.1, it is shown in which cases the differences 

between the observations and the model simulations on location Schiedam are relatively 

large. The red bar gives the percentage of the situations where the observation is more 

than two times the model simulation. The blue bar gives the total number of differences 

that occurs for every input parameter (wind direction, wind speed, temperature, hour of 

the day, day of the week and month of the year).  

 

For the wind direction, a high percentage of the differences are relatively large when the 

wind is from the south-east, but the total number of wind directions from the south-east 

is not very high. Thus it is assumed that the contribution to the total inaccuracy is not 

very large. For the wind speed, a high percentage of the differences is relatively large 

when the wind speed is below 2 m/s. Also the total number of times that the wind speed 

is below 2 m/s, is relatively large. This suggests that the inaccuracies in the model when 

the wind speed is low have a large contribution to the total inaccuracy. 

 

Another notable parameter is the hour of the day, in the morning and the end of the 

evening there are relatively many large differences. This is an indication that there are 

some inaccuracies in the sources which are time dependent (traffic and residents). The 

last interesting parameter is the month of the year. In the autumn and the winter are 

relatively many large differences. This is also an indication that the time dependent 

sources have inaccuracies. In Section 2.2 of (Kranenburg, 2009), it was already 

mentioned that the sources industry and shipping do not have a time dependency in the 

Real Time URBIS model and that this could be a shortcoming of the model. Thus also 

the sources shipping and industry may have inaccuracies. 

 

The idea in this chapter is that the uncertainty of the model is caused by several 

different emission sources; therefore the Kalman filter will be applied on all the 

different sources. With this application, all the standard concentration fields for all 

emission sources will be estimated. These estimates are again calculated by multiplying 

each field with a correction factor, which leads to a corrected state equation: 
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In this chapter it is no longer assumed that some of the entries of γ are equal to zero. 

The Kalman filter process will estimate all values of γ by a comparison of the model 

with the observations.  
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An advantage of this application is that the uncertainty intervals for the total 

concentration are a combination of uncertainty intervals for the different emission 

sources. This leads to an uncertainty interval which is different for every location. For 

example, on locations where the concentration is mostly caused by emission from 

traffic, the uncertainty interval is approximately equal to the uncertainty interval of the 

concentration from traffic sources. If the uncertainty for the source traffic can be 

reduced, the uncertainty on all locations with high traffic emission will be reduced. 

 

 

 

Figure 6.1:  Bar plots of relatively large differences between observations and model simulations at location 

Schiedam. In the lower graphs is the total number of differences plotted for each input 

parameter, in the upper graphs is the percentage given when the observation is more than two 

times the model simulation. 

 

6.2 Kalman filter 

The application of the Kalman filter is nearly the same as in the application for the 

background concentrations. Every standard concentration fields gets a correction factor. 

So for each of the entries of γ a temporal correlation parameter has to be found. For 
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some sources this will be difficult because there is no good series of measurements to 

calculate the correlation. In Section 6.4 the different values for α will be calculated.  

 

Not all the values for α can be computed exactly and also the uncertainty of the model σ 

and the uncertainty of the observations (R), estimated in Section 5.3, are not known 

exactly. Therefore some sensitivity runs are done to find the optimal values for α, σ and 

R; this will be explained in Section 6.5. 

 

6.2.1 Dynamical system 

 

To create a dynamical system for γ, it is again necessary to make a switch to the 

logarithms of the concentrations. This is done in the next formula: 
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This equation is non-linear for γ, therefore a linearization is made around γk = 0: 
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where 
m

kc  is the total concentration, calculated by the model. The dynamical system 

will then become: 
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Matrix A contains the temporal correlation parameters; these are calculated in Section 

6.4. Covariance matrix Q is again a diagonal matrix, with diagonal elements
2

iq . This is 

a colored noise process, driven by a white noise process, like in the application for the 

background. Furthermore it is assumed that both the temporal correlation and the model 

uncertainty are independent of time: 

 

 
221 iiiq σα−=  (53) 

 

where σi corresponds with the model uncertainty for each entry of γ. 

6.2.2 Kalman filter form 

 

The dynamical system has to be written in Kalman filter form, for the implementation 

of the Kalman filter. There are still 9 series of measurements available, these series will 

be compared with the model simulations to get a better estimate of the NOx 

concentration. The dynamical system in Kalman filter form is defined as follows: 
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In these equations matrix H is the system operator which projects the model state onto 

the observations. Covariance matrix R corresponds to the uncertainty of the logarithms 

of the observations, the instrumental error combined with the representation error. 

Matrix R will be a diagonal matrix; the elements on the diagonal are estimated in 

Section 5.3. 

 

To simplify the notations from Equation (54), the Kalman filter equations are written as 

follows: 
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where vector y~  and matrix H
~

are defined as follows: 
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6.2.3 Forecast step 

 

In the forecast step, a prediction is made for the values of γk+1 with information from 

the time step before. The expected median and variance of γk+1 are given by: 
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6.2.4 Analysis step 

 

In the analysis step the forecasted concentrations are compared with the observations. 

Like in the application for the background concentrations, it is not expected that the 

values for γ will become very large. Also the linearization around γ = 0 is of order  

O(γ · γ), thus large values for γi will cause stability problems. For those reasons a 

screening process as described in Section 5.6 is implemented. In Section 6.3 the 

screening process for this application will be explained. The analysis step is the same as 

in the application for the background: 
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where Kk+1 is again the minimal variance gain, the gain that minimizes 
a

kP 1+  defined as 

follows: 
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6.3 Screening process 

If the difference between the observation y and the model simulation 
m

kc  is large, the 

Kalman filter will produce a large correction factor for one or more standard 

concentration fields. This is not wanted, because it is likely that a large difference is 

caused by another inaccuracy in the model or by an incidental occasion. For example 

when a road is blocked, the traffic pattern is different and thus the emissions are 

different from the expectations calculated by the model. Like in the application for the 

background in Chapter 5, a criterion has to be made whether a measurement is good 

enough.  

 

After the forecast step, it is possible to make an uncertainty interval of the forecasted 

concentration. Further an uncertainty interval for the observation can be calculated with 

the uncertainty of the measurements (R). When both intervals have an empty 

intersection, the difference between the simulation and the observation is too large. If 

for both intervals the 2σ uncertainty interval is taken, the screening criterion 

corresponds with the screening criterion in Section 5.6: 
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The value for rfrac is optimized in Section 6.5 and equal to 0.34. The application of the 

Kalman filter with this screening process with β = 2, results in a concentration for the 

first week of 2006 for locations Schiedam and Overschie as shown in Figure 6.2. 

Contradicting to Figure 5.6, only 12% of the observations are not executed in the 

analysis step of the Kalman filter. This means that the inaccuracies in the model could 

be well described by inaccuracies of the several standard concentration fields. 

 

 

Figure 6.2:  Concentrations for the first week of 2006 after application of the Kalman filter on all the 

sources, with a screening process, at locations Schiedam and Overschie 



 

 

50 /110  TNO report | TNO-034-UT-2010-02193_RPT-ML

 

 

6.4 Correlation parameters α 

In Section 5.4, an estimate value for the parameters αi corresponding with the source 

background is calculated. In this section the same procedure will be done to obtain 

estimated values for the other parameters αi. The temporal correlation for the source 

'Rest' is not possible to calculate with a series of measurements, therefore some runs of 

the Kalman filter has to be applied to get the optimal values for αi corresponding with 

the source 'Rest', this will be done in Section 6.5. 

 

6.4.1 Traffic sources 

 

The temporal correlation for the traffic sources will be obtained by looking at the 

observations from the monitoring stations in Overschie and Ridderkerk. The station in 

Overschie is located close to main road A20. In Ridderkerk the station is located close 

to main roads A15 and A16; therefore both stations will give a good approximation of 

the emission from traffic sources.  

 

In Figure 6.3, the temporal correlation is given for both stations; this is done with the 

same method as for the background sources, described in Section 5.4. The best fitting 

exponential function has de-correlation parameter τ = 10, thus an estimated value for 

each αi corresponding with a traffic source is equal to e
-1/10

. 

 

The high peaks at 24 and 48 can be explained by the fixed traffic pattern. Each day the 

amount of traffic is roughly the same, thus there is a high mathematical temporal 

correlation for periods of one day. 

 

Figure 6.3:  The temporal correlation for traffic stations Overschie and Ridderkerk. The black line 

corresponds with the de-correlation parameter τtr = 10 
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6.4.2 Industry source 

 

The temporal correlation for the source 'Industry' is not easy to determine. There is no 

monitoring station, which is placed on a location with a dominating industry emission. 

The monitoring station in Vlaardingen is the best station to calculate the correlation. 

This only results in an estimated correlation which is not very accurate. In Figure 6.4, 

the temporal correlation on location Vlaardingen is given. The best fitting exponential 

has de-correlation parameter τ = 10, thus an estimated value for αi corresponding with 

the source 'Industry' is equal to e
-1/10

. 

 

Figure 6.4:  The temporal correlation for station Vlaardingen, the station which matches best with the 

source industry. The black line has de-correlation parameter τin = 10. 

 

6.4.3 Shipping sources 

 

Also for the temporal correlation of the shipping sources, it is not easy to determine an 

estimate value for αi. The monitoring station Maassluis is the best to calculate the 

correlation, the temporal correlation at Maassluis is given in Figure 6.5. In here the 

same holds as for the industry, the de-correlation parameter τ = 8 is only an inaccurate 

estimate. This leads to an estimated value for αi corresponding with the shipping 

sources which is equal to e
-1/8

. 
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Figure 6.5:  The temporal correlation for station Maassluis, the station which corresponds best with the 

emission from shipping. The black line corresponds with de-correlation parameter τsh = 8. 

 

6.4.4 Rest source 

 

It is clear that the temporal correlation for the source 'Rest' is not easy to declare. The 

only idea of this temporal correlation is that the de-correlation parameter τre will be 

around the values for the de-correlation parameters τbg, τtr, τin and τsh. The de-

correlation parameter τre is estimated equal to 10, thus αi corresponding with source 

'Rest' is estimated equal to e
-1/10

. 

 

6.5 Sensitivity runs 

In Sections 5.4 and 6.4, all the parameters αi,j for the matrix A are not computed 

exactly. Also the parameter σ for the uncertainty of the model and the uncertainty of the 

measurements rfrac are not known exactly. Therefore the Kalman filter is applied for 

different values of τbg, τtr, τsh, τin, τre and different values of σ and rfrac.  

 

In Section 5.4, it has been shown that an estimated value for τbg is equal to 12. In 

Section 6.4 the estimated values for τtr, τsh, τin and τre were found. The uncertainty of the 

model is assumed between 10% and 30%. The instrumental error in the observations 

calculated in Section 5.3 is equal to 8%, but the representation error may be larger, due 

to a grid with a low resolution. A trial and error process leads to the conclusion that the 

Kalman filter gives an optimal result with total uncertainty of the measurements 

between 20% and 40%. This will lead to applications of the Kalman filter with the 

following values: 
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To obtain which combination of values for τbg, τtr, τsh, τin, τre, σ and rfrac is the best, there 

are three criteria which have to be optimized: The Root Mean Squared Error (RMSE), 

the mean of the differences between the Kalman filter results and the observations 

(Mean) and finally the standard deviation of these differences (Std).  

 

In the analysis to find the optimal values for the input parameters, the monitoring 

stations in Overschie and Ridderkerk are not involved. At those two locations the 

differences between the observations and the simulations are very large. This could lead 

to inaccuracies in the calculation of the optimal values for the Kalman filter parameters. 

 

6.5.1 Root Mean Squared Error (RMSE) 

 

The first criterion is to minimize the value for RMSE: 
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where 
KF

kic , is the concentration after the application of the Kalman filter. The number of 

time steps corresponds with the value of n, which is equal to 8760 for a whole year. The 

summation over i is up to 7, the number of monitoring stations. The value for the 

RMSE is a measure for the absolute difference between the results after application of 

the Kalman filter and the observations. When this is minimized the Kalman filter results 

have the smallest distance the observations. 

 

 

6.5.2 Mean 

 

Another criterion is the mean of the differences between the Kalman filter results and 

the observations: 
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The value for this mean is in the optimal situation equal to 0. In that case the Kalman 

filter results have the same mean as the observations. 
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6.5.3 Standard deviation 

 

The final criterion is the standard deviation of the differences between the Kalman filter 

results and the observations: 
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In the optimal situation the value for the standard deviation is equal to 1. 

 

6.5.4 Optimal results for RMSE, Mean and Standard deviation 

 

If the Kalman filter is applied with different values for each parameter, the numbers 

RMSE, Std and Mean determine the optimal value for each parameter. In the left upper 

panel of Figure 6.6 the influence of parameter τbg is shown. It can be seen that the 

RMSE is nearly independent of this parameter, the value for Mean is close to zero for 

τbg = 2 and the value for Std is close to 1 for τbg = 10. Therefore the optimal value for the 

parameter τbg, according to this sensitivity run will be equal to 6, which is the average 

between 2 and 10. 

 

In the right upper panel of Figure 6.6, the influence of parameter τtr is shown. This 

figure shows that an optimal value for τtr will be equal to 4. The lower left panel and the 

lower right panel shows the influence of parameters σ and rfrac. The same analysis as for 

the temporal correlation parameters leads to optimal values σ = 0.19 and rfrac = 0.34. 

 

The parameters, τsh, τin and τre do not have a large impact on the three criteria. Therefore 

they will be chosen equal to the estimated values from Section 6.4. 

 

In Table 6.1, all the information about the input parameters is given: the second column 

contains the estimated values for these parameters and the third column contains the 

optimal values according to some sensitivity runs. Finally, the last column shows the 

input parameters which are used in the rest of this report. These values are determined 

by the estimate and by the optimal values from the sensitivity runs. 

 

Table 6.1:  Input parameters for the Kalman filter. In the final column are the values which are involved in 

the Kalman filter. 

Parameter Estimate Calculation by 

sensitivity runs 

Value implemented 

in the Kalman filter 

Rfrac 0.20-0.40 0.34 0.34 

σ 0.10-0.30 0.19 0.19 

τbg 12 6 10 

τtr 10 4 8 

τsh 8 --- 8 

τin 10 --- 10 

τre 10 --- 10 
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Figure 6.6:  Sensitivity of the three criteria against the Kalman filter parameters. Upper left: τbg, upper right: 

τtr, lower left: σ, lower right: rfrac 

 

6.6 Connection with population 

After application of the Kalman filter, it is possible to calculate an uncertainty interval 

for the concentration NOx for each grid point in the area of interest. The next objective 

is to connect the interval on a certain grid point with the number of people living nearby 

that grid point. 

 

6.6.1 Population density 

 

A map of the population of the area is given in Figure 6.7. This figure represents the 

density of postal zip codes per grid point instead of the number of people per grid point. 

The total number of zip codes in this area is equal to 595.396. According data from 

CBS
3
, the total number of residents in this region is equal to 1.186.306 on the first of 

January of 2006. Thus the average number of people per zip code is equal to 1.99. 

Further in this report it is assumed that the number of people per zip code is equal, thus 

the number of residents per grid point is 1.99 × the number of zip codes per grid point. 

 

 codes zip of#99.1pop ×=j  (65) 

                                                        
3 CBS: Centraal Bureau voor de Statistiek. www.cbs.nl 

Dutch organization for statistics 
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Figure 6.7: Density of postal zip codes in the DCMR area 

 

6.6.2 Absolute uncertainty connected with population density 

 

For every grid point, on every hour an uncertainty interval is calculated by the Kalman 

filter application. The width of these intervals is a measure for the uncertainty of the 

concentration NOx, if the width of the interval is small, the estimate of the concentration 

NOx is accurate, thus little uncertainty. The idea is now to have small intervals on 

locations where the population density is high; in that case there is a good estimate of 

the exposure of the population to the concentration NOx. The width of an uncertainty 

interval in grid point j on time k is the upper bound of the 1σ interval minus the lower 

bound of the 1σ interval: 
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where mi,j is the standard concentration of emission source i in grid point j. Further the 

width of an uncertainty interval is called the absolute uncertainty. 

 

In  

Figure 6.8, the annual mean 
abs

ju of 
8760

1, }{ =k

abs

kju  is plotted for each grid point: 
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In this figure, it can be seen that relatively many grid points have an annual mean of 

absolute uncertainty above 40. This large uncertainty mostly occurs on main roads and 

industrial regions. So there are not that many people that live nearby grid points with a 

large uncertainty. This is shown in Figure 6.9, where the annual mean 
abs

ju  is 

compared with the population. On the x-axis are the values of 
abs

u on the y-axis are the  
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number of people living nearby a grid point with that annual mean. For 

],[ 1

abs

i

abs

i

abs

j uuu +∈ , the number of people for that width range of 
abs

u  is equal to: 
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where ngc is the number of grid points and I is the indicator function. In this figure, it 

can be seen that unless a lot of grid points have a large uncertainty, there are not many 

people living nearby those grid cells. The histogram is centered around 
abs

ju = 14, 

which means that most of the people lives nearby a grid point with annual mean of the 

absolute uncertainty around 14. 

 

Figure 6.8: The values for 
abs

ju  over the whole area of interest. 
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Figure 6.9:  Histogram of the number of people against the annual means of the absolute 

uncertainties
abs

u . On the x-axis are the ranges of
abs

u ; on the y-axis is the number of 

people living nearby a grid point with 
abs

ju  in that range. 

 

6.6.3 Relative uncertainty connected with the population density 

 

Furthermore it is interesting to look at the relative uncertainty in the whole region. On 

each grid point the absolute uncertainty could be divided by the expected concentration. 

This is a measure for the relative uncertainty: 
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where 
KF

kjc ,  is the expected concentration on grid point j at time k after the application 

of the Kalman filter: 
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The expected concentration is calculated with the expectation of the log-normal 

distribution, therefore the term
2

,2
1

kip  is taken into the exponential.  

 

In Figure 6.10 the annual mean 
rel

ju of 
8760

1, }{ =k

rel

kju  is plotted for each grid point in the 

domain. It is clear that the relative uncertainty has the smallest values on the main roads 

and around the 'Nieuwe Waterweg' the harbor entry of Rotterdam. At the 9 monitoring 

stations, the contribution from the shipping and traffic sources is large. Therefore the 

Kalman filter produces a smaller relative uncertainty of these sources. 

 

In Figure 6.11, the relative uncertainty is connected with the population. On the x-axis 

are the annual means of the relative uncertainty, on the y-axis the number of people 

living nearby a grid cell with that relative uncertainty. Most of the population has 
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almost the same relative uncertainty. This is because, the main roads have the smallest 

relative uncertainty, but this does not a have large impact on the population. 

 

Figure 6.10: The values for
rel

ju over the whole area of interest 

 

Figure 6.11: Histogram of the number of people against the annual mean of the relative uncertainties 
rel

ju . 

On the x-axis are the ranges of 
rel

ju , on the y-axis are the number of people living nearby a 

grid cell with 
rel

ju  in that range. 



 

 

60 /110  TNO report | TNO-034-UT-2010-02193_RPT-ML
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7 Conclusions and discussion 

The present application of the Real Time URBIS model causes some problems like the 

possible occurrence of negative concentrations. These problems are caused by some 

inaccuracies of the model. In Chapter 3, it is shown that the inaccuracies of the model 

are depends on the wind direction, the wind speed and the hour of the day. For that 

reason a Kalman filter is applied on the standard concentration fields from the URBIS 

model to eliminate these inaccuracies. With the Kalman filter the model simulations are 

connected with a series of measurements. This connection leads to a corrected 

simulation of the concentration NOx, together with an uncertainty interval for this 

concentration. 

 

In Chapter 5, the Kalman filter was only applied on the correction factors for the 

background concentrations, this was not sufficient to eliminate all inaccuracies. 

Therefore in Chapter 6, the Kalman filter is applied on all emission sources. The 

corrected model simulations fits better on the observations, thus the Kalman filter is a 

good instrument to make a real time correction of the Real Time URBIS model. 

 

The application of the Kalman filter results in an uncertainty interval for each correction 

factor, with these uncertainty intervals it is possible to calculate an uncertainty interval 

for the concentration NOx on the whole domain covered by DCMR. The widths of the 

uncertainty intervals depend on the contribution of each emission source to the total 

emission. 

 

The uncertainty interval has a large width on the main roads and in the industry region 

around Pernis. On this locations the concentration is relatively large, thus also the 

absolute uncertainty will be large. The application of the Kalman filter reduces the 

relative uncertainty, this mainly happened on the main roads and around the 'Nieuwe 

Waterweg'. This is because the concentrations on the 9 monitoring stations have large 

contributions from the traffic and the shipping sources, thus the relative uncertainty of 

these sources is decreased. 

 

The connection between the uncertainty intervals and the population density leads to 

some extensions of the Kalman filter. The extensions will be discussed in the next part 

of this report. 
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Part II  
 
Extended applications of the Kalman filter to reduce the 
uncertainty 
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8 Introduction 

In the first part of this report, the theory and the results of the use of a Kalman filter in 

the Real Time URBIS model is given. The basic idea of a Kalman filter is to produce a 

Gaussian distribution for a certain unknown variable. In the Real time URBIS model 

the unknown variable is the vector with correction factors for each standard 

concentration field from the URBIS model. With the Gaussian distribution for the 

correction factor, an uncertainty interval for the concentration NOx is found.  

 

In this part some methods are described to reduce the uncertainty; the main idea is that 

the uncertainty should be as small as possible on locations with high population density. 

In Chapter 9, some extra monitoring stations are added to the present monitoring 

system. If these stations are placed on well chosen locations, the total uncertainty 

connected with the population can be minimized. In this chapter also a method is 

described to create an optimal setting of monitoring stations. In Chapter 10, the Kalman 

filter is applied on some different time scales. Using this, it is possible to add 

monitoring stations, which measures the concentration on different time scales. This 

will lead to a description of an optimal placement of extra monitoring stations with 

different time scales. In Chapter 11, another extension of the Kalman filter will be 

described. In that chapter the correction factors, calculated as in the first part, will be 

analyzed. This analysis leads to some other ideas of inaccuracies in the Real Time 

URBIS model. With these ideas the model could be improved, such that the uncertainty 

will decrease. Finally in Chapter 12, the conclusions of the extensions of the Kalman 

filter are given. 
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9 Extra monitoring stations 

9.1 Introduction 

The aim is to reduce the width of the uncertainty intervals. The idea is that a reduction 

of the uncertainty can be done by a reduction of the uncertainty of one of the emission 

sources. To reduce the uncertainty of an emission source, it is possible to add a 

monitoring station. If this station is located nearby a grid point with a dominating 

emission from one of the sources, the idea is that the uncertainty of that source will be 

reduced. This will then lead to a reduction of the total uncertainty. 

 

To have an optimal reduction of the total uncertainty, it seems obvious to reduce the 

uncertainty of the important emission sources. In Section 9.2, the exposure on the 

population is shown for each of the 11 emission sources. This leads to an insight into 

the importance of each emission source. The sources with the largest contribution to the 

exposure causes the largest uncertainty, thus a reduction in the uncertainty of those 

sources will cause an effective reduction in the total uncertainty in relation with the 

population. 

 

Further it is important to look at the influence of a monitoring station on the 

uncertainty; therefore in Section 9.3, a simulation is made without any measurements 

involved in the Kalman filter. The uncertainty of the model (the uncertainty p of the 

correction factors γ were stated equal to 19 %) will be used to get the uncertainty 

intervals for each grid point for each hour. After that in Section 9.4 the present stations 

will be added to the Kalman filter to see the influence of a monitoring station on the 

uncertainty. 

 

If the influence of the different stations on the uncertainty and the importance of each 

emission source are known, some virtual monitoring stations will be added to the 

system in Section 9.6.1. The locations of these virtual monitoring stations will be 

determined by the analysis of the influences of the other stations and by the analysis of 

the importance of each emission source. 

 

9.2 Exposure per emission source 

In this section the exposure to the concentration caused by each emission source is 

determined. The exposure per emission source can be used to determine the importance 

of each source. When the exposure of the population on the concentration NOx caused 

by a specific emission source is small, it is not useful to decrease the uncertainty of that 

specific emission source. A reduction of the emission from that source will not lead to a 

large reduction of the total uncertainty connected with the population. 

 

To determine the emission per source, a simulation is made for the whole year for each 

emission source separately. A measure for the exposure to each emission source can be 

given by the number Es: 
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where jsc ,  is the annual mean of the concentration caused by source s on grid point j. 

The number of people living nearby grid point j corresponds with popj. In Table 9.1, the 

numbers Ei are given for each emission source, as well as the contribution to the total 

exposure. This table shows that the sources 'Zone card', 'Background' and 'Ships sea' 

have the largest contribution to the exposure. The source 'Zone card' is an emission 

sources which covers the emission of highway traffic, the source 'Background' covers 

the emission which is blown into the area from the rest of the Netherlands and the 

source 'Ships sea' covers the emission from sea ships in the harbor of Rotterdam. The 

figures in Appendix B show the standard concentration fields of each of the emission 

sources. 

 

Table 9.1: Exposure caused by each of the different emission sources 

Source 

 

Exposure E × 10
6 

 

Percentage on total 

contribution 

Abroad 0 0 

Background 5.3 21.0 % 

Zone card 5.0 20.0 % 

CAR 1.5 6.0 % 

Roads nearby 2.4 9.6 % 

Roads far 1.5 6.0 % 

Industry 0.92 3.7 % 

Domestic 1.3 5.2 % 

Ships inland 0.016 0.1 % 

Ships sea 4.4 17.9 % 

Rest 2.6 10.5 % 

Total 24.9 100.0 % 

 

9.3 Annual mean of the uncertainty without a Kalman filter 

For the year 2006, the concentration is simulated without the Kalman filter. The 

uncertainty of the model forms the basis of the annual mean of the uncertainty on each 

grid point. The annual means of the absolute uncertainties are shown for each grid point 

in the left panel of Figure 9.1. The absolute uncertainty in grid point j at time k is 

simply the width of the uncertainty interval of the total concentration NOx, as in 

Equation (66): 
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There is also a relative uncertainty as in Equation (69), this is the absolute uncertainty 

divided by the expected concentration NOx: 
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Here 
KF

kjc , represents the expected concentration NOx in grid point j at time k after the 

application of the Kalman filter, this expected concentration is again calculated from the 

expectation of the log-normal distribution: 
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The annual mean of the relative uncertainty for only the model simulation is given in 

the right panel of Figure 9.1. Because there are no measurements involved in the 

Kalman filter, the parameters γ and p are known and equal to γ = 0 and p = 0.19. 

 

Both the absolute and the relative uncertainty can be connected with the population in 

the area to get an idea of the influence of this uncertainty on the population. In Figure 

9.2 these connections are shown. In the left panel the connection with the absolute 

uncertainty is shown, for each annual mean of the absolute uncertainty the number of 

people that lives nearby a grid point with that annual mean is given in the histogram.  

 

The total absolute uncertainty on the population could also be expressed as a single 

number. This number U
abs

 is the sum over all grid points of the annual mean of the 

absolute uncertainty per grid point multiplied with the number of people living nearby 

that grid point: 
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Here ngp is the number of grid points and 
abs

ju is the annual mean of the absolute 

uncertainty on grid point j. The variable popj is the number of people living nearby grid 

point j. The idea is to minimize this number U
abs

. When the uncertainty is large in a 

sparsely populated grid point, this number will not get large. For the simulation without 

any measurements taken into the Kalman filter application this number is equal to 

19.0×10
6
. 

 

The connection between the relative uncertainty and the population is shown in the right 

panel of Figure 9.2. For each annual mean of the relative uncertainty, the number of 

people that lives nearby a grid point with that relative uncertainty is given in the 

histogram. Because the relative uncertainty is only determined by the model uncertainty 

γ = 0, p = 0.19, the relative uncertainty is constant on the whole domain and equal tot 

0.38. Therefore the histogram has only one peak, all the people lives on a location with 

relative uncertainty equal to 0.38.  

 

The total relative uncertainty on the population could also be expressed as a single 

number, this single number U
rel

 is given by: 
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where 
rel

ju  is the annual mean of the relative uncertainty in grid point j. For the model 

simulation without any measurements involved in the Kalman filter, this number U
rel

 is 

equal to 445 ×10
3
. 

 

Figure 9.1:  Annual mean of the uncertainties for only the model simulation without any measurements 

involved in the Kalman filter. Left panel: absolute uncertainty. Right panel: relative 

uncertainty. 

 

Figure 9.2:  Histograms of the number of people living nearby a grid point per range of uncertainty. Left 

panel: absolute uncertainty. Right panel: relative uncertainty. 

 

9.4 Influence of original stations on the absolute and relative uncertainty 

In this section the influence on the uncertainty of the measurements made on the current 

monitoring stations is determined. In the current situation there are 4 locations with a 

dominating emission from the traffic sources. These locations are Ridderkerk, 

Overschie and the two stations at Bentinckplein. The monitoring station in Maassluis 

has a dominating shipping source. The other stations have more than 1 significant 

contribution of the several emission sources; these stations are so called combined 

stations. 

 

In Section 9.4.1, the influence of the traffic sources will be determined. The idea is that 

the uncertainty of the traffic sources will decrease, such that the uncertainty on each 

point in the domain with dominating traffic emission will decrease. In Section 9.4.2, the 

influence of the shipping station in Maassluis will be determined. The influence of the 

combined stations will be determined in Section 9.4.3. Finally in Section 9.4.4, some 

combinations of stations will be analyzed. 
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9.4.1 Traffic stations 

 

The stations in the domain with a dominating traffic source are located in Overschie, 

Ridderkerk and Bentinckplein. In Overschie and Ridderkerk the emission from highway 

traffic dominates the total emission. The stations on Bentinckplein have dominating 

emission from local traffic. Now the Kalman filter is applied on the model with the 

series of measurements made on one of these stations. Per station the influence on the 

uncertainty is measured by the number U
abs

 defined in Equation (75), and by the 

number U
rel

 defined in Equation (76). According to the theory about a Kalman filter, the 

relative uncertainty will always decrease in l
2
-norm, after the application of the Kalman 

filter, while the absolute uncertainty could both increase and decrease. More about this 

is explained in Section 9.5. 

 

Overschie 

 

At location Overschie the traffic sources have a total contribution about 51 %; the 

largest contribution is from the highway traffic which has a contribution about 43 % on 

the total emission. The station in Overschie is located next to main road A13 not far 

from the junction of the main roads A13 and A20 (Kleinpolderplein). The problem with 

this monitoring station is that the observations on this location are much higher than the 

model simulations. The annual mean of all the observations is equal to 88.4 µg/m
3
, 

while the annual mean of the model simulations is equal to 54.8 µg/m
3
. The 

observations are 62 % higher than the simulations. Unless this large difference, only 4 

% of the available observations is thrown out the analysis step of the Kalman filter by 

the screening criterion.  

 

For the absolute uncertainty the number U
abs

 becomes equal to 19.5 × 10
6
 which is an 

addition of 3.2 %. In Section 9.5, an explanation of this increase of uncertainty will be 

given. 

 

For the relative uncertainty, the number U becomes 425 × 10
3
; this is a reduction of 4.4 

%. The idea is that this reduction is mainly caused by a reduction of the uncertainty of 

the traffic sources. This idea is confirmed by the fact that the relative uncertainty is 

most decreased on the main roads. This is shown in Figure 9.3, the left panel shows a 

reduction of the relative uncertainty for the main roads. Further the uncertainty in the 

rest of the area also decreased a little; this is caused by the other sources which have 

small contribution on the total emission in Overschie. The connection with the 

population is shown in the right panel of Figure 9.3, the first peak corresponds with the 

people that live not far from the main roads, and the other peak corresponds with the 

rest of the people. 
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Figure 9.3:  Left panel: The annual mean of the relative uncertainty, with the measurements from Overschie 

in the Kalman filter, in the right panel these annual means are connected with the population. 

 

Ridderkerk 

 

At location Ridderkerk the emission from highway traffic also dominates the total 

emission; about 85 % of the total emission is caused by highway traffic. The total 

contribution of all the traffic sources is about 91 %. The location Ridderkerk is located 

next to the main roads A15 and A16, not far from the junction Ridderster.  

 

At this location, a similar problem exists as in Overschie. There is a large difference 

between the model simulations and the observations; at this location the observations 

are much lower than the model simulations. The annual mean of the model simulations 

is equal to 203.9 µg/m
3
, while the annual mean of the observations is equal to 94.6 

µg/m
3
. The simulations are 116 % higher than the observations.  

 

In this situation the screening criterion throws 38 % of the observations out of the 

analysis step of the Kalman filter. The absolute uncertainty gets an extra reduction, 

because the expected concentration is lower than the model simulation. An explanation 

for this will be given in Section 9.5. The number U
abs

 becomes equal to 18.0 ×10
6
, 

which is a reduction of 5.0 %. 

 

For the relative uncertainty, the number U
rel

 has become equal to 434 × 10
3
 which is a 

reduction of 2.4 % with respect to the situation without any observations involved in the 

Kalman filter. Also for this station the reduction is mainly caused by a reduction of the 

uncertainty of the traffic sources. Figure 9.4 shows the decrease of the relative 

uncertainty and the influence on the population of this reduction. Because of the large 

contribution from the traffic sources, the uncertainty on locations with small traffic 

emission is not decreased. Therefore, the uncertainty is little decreased for a lot of 

people; also the small number of observations which are used by the Kalman filter 

causes this small reduction. 
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Figure 9.4:  Left panel: The annual mean of the relative uncertainty, with the measurements from 

Ridderkerk in the Kalman filter, in the right panel these annual means are connected with the 

population. 

 

Bentinckplein  

 

The monitoring stations at Bentinckplein are located directly next to a busy local road 

in the center of Rotterdam. Therefore the emission from local traffic dominates the total 

emission, in the model the emission from local traffic is determined by two different 

sources 'CAR' and 'Roads nearby'. The total contribution of these two sources is 59 % 

of the total emission. 

 

The annual mean of the model simulations is equal to 92.8 µg/m
3
 for the DCMR station 

and 104.9 µg/m
3 

for the RIVM station. Those two annual means should be the same, but 

only the model values with a corresponding observation are taken into these means. 

Because of some missing measurements the annual means of the concentrations for 

both stations are not taken for the same series of model simulations. 

 

The annual mean of the observations made by DCMR is equal to 80.3 µg/m
3
, which 

means that the simulations are 16 % higher than the observations. The annual mean of 

the observations made by RIVM is equal to 96.9 µg/m
3
, which means that the 

observations are 8 % higher than the simulations. The screening criterion throws out 5 

% of the observations made on the DCMR station and also 5 % of the observations 

made on the RIVM station.  

 

For the relative uncertainty, the number U
rel

 becomes equal to 433 × 10
3
 for the DCMR 

station and 436 × 10
3
 for the RIVM station, this are reductions of 2.7 % and 2.0 %. 

Both these reductions are theoretically nearly independent of the observations, thus they 

must be nearly the same. This is not the case; the difference between those reductions 

could be caused by the difference in the number of observations taken into the 

analyzing step of the Kalman filter (7431 against 5818). This is explained in more detail 

in Section 9.5. 

 

The reductions are mainly caused by the reduction in the local traffic sources. Because 

these sources do not have large contributions on the total emission on the whole domain 

(see Section 9.2), the decrease in the relative uncertainty will not be very large. Further 

the decrease will be nearly the same in the whole area, as shown in Figure 9.5. The 

reason for this is that the contribution of the local traffic sources is nearly the constant 

on the whole area. Therefore the connection with the population shows that all people 

lives nearby grid points which have nearly the same (little reduced) relative uncertainty. 
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For the absolute uncertainty the number U
abs

 becomes equal to 17.9 × 10
6
 for the 

DCMR station, this is a reduction of 5.3 % with respect to the situation without any 

measurements. For the RIVM station, the number U
abs

 is equal to 18.2 × 10
6
, a 

reduction of about 4.0 %. 

 
 

Figure 9.5:  Left panel: The annual means of the relative uncertainty, with the measurements from 

Bentinckplein (DCMR upper and RIVM lower) in the Kalman filter, in the right panel these 

annual means are connected with the population. 

 

9.4.2 Shipping stations 

 

Only the station in Maassluis has a large contribution from the emission sources in 

category shipping. At location Maassluis, the source 'Ships sea' has a contribution about 

44 % of the total emission. This source represents the emission from sea ships. The 

monitoring station is located in a quiet residential area in Maassluis not far from the 

'Nieuwe Waterweg', the harbor entry of Rotterdam. Therefore the emission from 

maritime ships is large with respect to the other sources.  

 

The annual mean concentration calculated by the model is equal to 42.2 µg/m
3
, while 

the annual mean of the observations equals 51.6 µg/m
3
. Therefore the Kalman filter 

causes a little increase in the calculated concentration. 

 

The number U
abs

 has become equal to 18.4 × 10
6
, which is a reduction of 3.0 % with 

respect to the situation without any measurements. The number U
rel

 is now equal to 421 

× 10
3
, a reduction of 5.4 %. These large reductions are caused by the large contribution 

from the sea ships to the total emission and by the large number of observations which 

are involved in the analysis step of the Kalman filter. The relative uncertainty is mostly 

decreased in the region with a large emission from the shipping sources; this is shown 
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in Figure 9.6. This figure shows also the connection with the population, because the 

emission from shipping sources has a large influence on the exposure, the uncertainty is 

decreased for a lot of people. 

 

Figure 9.6:  Left panel: The annual mean of the relative uncertainty, with the measurements from Maassluis 

in the Kalman filter, in the right panel these annual means are connected with the population. 

9.4.3 Combined stations 

 

There are several stations which have not one dominating emission source; these 

stations are Schiedam, Hoogvliet, Schiedamse vest and Vlaardingen. When one of these 

stations is added to the Kalman filter, the uncertainty of some different sources will be 

reduced.  

 

Vlaardingen 

 

One of the stations with no dominating source is Vlaardingen. The contribution from 

the maritime ships is 24 % but also the sources local traffic (20 %), background (16 %), 

highway traffic (14 %) and 'Rest' (14%) have significant contributions on the total 

emission. If the series of measurements from the monitoring station in Vlaardingen is 

added to the Kalman filter, the relative uncertainty of all these sources will decrease a 

little.  

 

The annual mean of the observations at this location is equal to 57.2 µg/m
3
, while the 

annual mean of the model simulation is equal to 54.1 µg/m
3
. The observations are a 

little higher than the simulations. The number U
abs

 has become equal to 18.1 × 10
6
, 

which is a reduction of 4.6 %, while the number U
rel

 becomes equal to 429 × 10
3
, a 

reduction of 3.5 % with respect to the situation without measurements involved in the 

Kalman filter. Because there is no dominating source, the relative uncertainty decreases 

on almost all locations with the same rate. Only the uncertainty in the region around the 

'Nieuwe Waterweg' is a little more reduced. Together with the connection with the 

population this is shown in Figure 9.7. 
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Figure 9.7:  Left panel: The annual mean of the relative uncertainty, with the measurements from 

Vlaardingen in the Kalman filter, in the right panel these annual means are connected with the 

population. 

 

9.4.4 Other stations and combinations of stations 

 

For the other stations in the area, the same sources, highway traffic, maritime shipping 

and local traffic dominates. In Table 9.2, the reductions of the numbers U
abs

 and U
rel

 are 

shown for each station in the Kalman filter. Also some combinations on the nine 

monitoring stations are shown in this table.  

 

The reduction of the relative uncertainty when the station Overschie is added is equal to 

4.4 %, and for the station in Ridderkerk this reduction is 2.4 %. Combining these two 

reductions should lead to 0.956 × 0.976 = 0.933, a reduction of 6.7 %. The actual 

reduction when both stations Overschie and Ridderkerk are added to the Kalman filter 

is 6.0 %. This shows that the efficiency for each extra station becomes smaller. 

 

In Figure 9.8, it is shown what happens if one series of measurements is added several 

times. For the station in Hoogvliet the reduction of number U
rel

 is equal to 4.4 %, if this 

series of measurements is added twice (two series of measurements with the same 

values on the same location), the reduction of the number U
rel

 is 5.3 %. If this series of 

measurements is added more times, the extra reduction of number U
rel

 becomes smaller. 

This gives the idea that an addition of stations with the same contributions from each 

source is ineffective.  

 

Therefore an idea is that an extra monitoring station should be on a location with a 

domination source, which does not dominate on other monitoring stations. 

 

If all the stations are involved in the Kalman filter the maximal reduction of the relative 

uncertainty should be 0.960 × 0.956 × 0.946 × 0.956 × 0.976 × 0.973 × 0.971 × 0.965 × 

0.980 = 0.724, a reduction of 27.6 %. The actual reduction is equal to 16.1 %. 
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Table 9.2:  Reductions of the number Uabs and the number Urel by application of the Kalman filter on 

different monitoring stations 

Monitoring 

stations 

involved in the 

Kalman Filter 

Dominating source(s) 

at the monitoring 

station 

Number 

Uabs × 106 

Reduction 

with respect to 

the situation 

without 

Kalman filter 

Number 

Urel × 103 

Reduction with 

respect to the 

situation 

without 

Kalman filter 

No Stations --- 19.0 --- 445 --- 

Schiedam Zone card (22 ) 

Ships sea (19 %) 

Background (15 %) 

17.8 6.2 % 427 4.0 % 

Hoogvliet Zone card (21 %) 

Ships sea (21 %) 

Background (16 %) 

18.2 4.1 % 426 4.4 % 

Maassluis Ships sea (44 %) 18.4 3.0 % 421 5.4 % 

Overschie Zone card (43 %) 19.5 -3.2 % 425 4.4 % 

Ridderkerk Zone card (85 %) 18.0 5.0 % 434 2.4 % 

Bentinckplein 

(DCMR) 

Roads nearby (35 %) 

CAR (24 %)  

17.9 5.3 % 433 2.7 % 

Schiedamse vest Roads nearby (25 %) 

Background (16 %)  

Ships sea (14 %) 

18.0 5.1 % 432 2.9 % 

Vlaardingen CAR (14 %) 18.1 4.6 % 429 3.5 % 

Bentinckplein 

(RIVM) 

Roads nearby (35 %)  

CAR (24 %)  

18.2 4.0 % 436 2.0 % 

All stations --- 16.2 14.5 % 373 16.1 % 

Overschie + 

Ridderkerk 

--- 18.8 0.5 % 418 6.0 % 

Bentinckplein 

(2×) 

--- 17.8 6.1 % 431 3.2 %  
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Figure 9.8:  Reduction of the number Urel for several times the monitoring station in Hoogvliet involved in 

the Kalman filter. 

9.5 Influence of measurements on uncertainties 

The results in Table 9.2 show that the relative uncertainty decreases if a series of 

measurements is added to the Kalman filter application. The absolute uncertainty could 

both decrease and increase when a series of measurements is added to the Kalman filter. 

This are results of Kalman filtering theory, which will be explained in this section. 

 

9.5.1 Absolute uncertainty 

 

The absolute uncertainty on grid point j at time k is defined as in Equation (72): 
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Because of the minimal variance gain in the Kalman filter, the covariance matrix P
a
 will 

always be smaller in l
2
-norm than the initial covariance matrix P

f
 from the model 

simulation: 

 

( )

2

22

2

22

f

ff

ff

fa

P

KHPP

KHPP

PKHIP

<

+<

−=

−=

 (78) 

 

On the main diagonal of
a

kP are the values for
2

,kip .  
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When the observations at time step k are larger than the model simulations, the 

correction factors γi,k will become positive. Therefore it is possible that the absolute 

uncertainty increases. For the monitoring station in Overschie the observations are 

much higher than the simulations, but only a small number of these large observations 

are thrown out by the screening criterion. The values of pi,k have decreased by the 

Kalman filter, but the correction factor γi,k became large enough to increase the absolute 

uncertainty. 

 

At location Ridderkerk the observations are much lower than the model simulations, 

therefore the correction factor γi,k became negative, and the reduction of the absolute 

uncertainty will be strengthened. 

 

When the difference between the observations and the simulations is very large, the 

total reduction of the absolute uncertainty could be inaccurate. In that case it is useful to 

improve the model or the representation of the measurements, such that the model fits 

better on the observations. 

9.5.2 Relative uncertainty 

 

The relative uncertainty in grid point j at time k is defined as in Equation (73): 
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where 
KF

kjc , is the expected concentration on grid point j at time k from equation (74).  

 

Thus for the whole domain: 
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dividing this by kiem iki
,

,

γ
µ leads to: 
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where the tail Ti,j is equal to: 
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The values for Ti,j are all positive thus Equation (81) becomes: 
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In Figure 9.9, the formula 
25.0 x

xx

e

ee
−−

 is plotted with respect to x, this figure shows that 

the relative uncertainty will decrease if pi,k decreases and pi,k ≤ 1.2.  

 

The Kalman filter is built with the minimal variance gain such that P
a
 decreases in l

2
-

norm; this is shown in Equation (78). The values for
2

,kip are on the main diagonal of P
a
, 

so the values for
2

,kip will also decrease. Further the assumed value for pi,k from the 

model simulation is 0.19, as shown in Section 6.5. Thus the relative uncertainty will 

decrease if a series of measurements is added to the system. 

 

 

Figure 9.9: The relative uncertainty will decrease if p decreases and p is below 1.2 

 

9.5.3 Influence of the measurements on the uncertainties 

 

Independent of the values of the observations, the relative uncertainty will decrease if a 

series of observations is added to the system. The rate of this decrease is still unknown 

and possibly dependent of the values of the observations.  

 

First it is shown in Table 9.2, that the reduction of the relative uncertainty is small for 

the station in Ridderkerk. At this station 38 % of the observations are screened, thus the 

Kalman filter did not have many possibilities to decrease the uncertainty. Therefore the 

first conclusion is that, if the difference between the model simulations and the 

observations is large, the screening criterion throws out a lot of observations and the 

relative uncertainty will not have a large reduction.  

 

For the situation that the observations and the simulations do not differ a lot, the rate of 

decrease of the relative uncertainty is possibly dependent of the observations. As shown 
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in Section 9.5.2, the relative uncertainty is dependent of the values for p. These values 

are calculated in the analysis step of the Kalman filter, the values for p are equal to the 

variances on the main diagonal of covariance matrix P. The matrix P is calculated as 

follows: 

 
fPKHIP )( −=  (84) 

 

where K is the minimal variance gain: 

 

 
1)( −ΤΤ += RHHPHPK ff
 (85) 

 

Because of the matrix R is dependent of the observations; the relative uncertainty 

depends also of the observations. The influence of this dependency is shown by a 

special application of the two stations at Bentinckplein. In this application only the 

observations are involved on the time steps that both of the stations have a valid 

observation. This leads to 6062 observations for both stations. The annual mean of the 

model simulations on this 6062 time steps is equal to 104.8, the annual mean of the 

observations made on the DCMR station is 92.3 and for the RIVM station the annual 

mean of the observations is 97.0 At the DCMR station the screening process throws out 

289 observations, this is 4.8 %. At the RIVM station 312 observations are thrown out 

by the screening process, which is 5.1 %. 

 

The numbers U
rel

 becomes equal to 436 × 10
3
 for both the DCMR station and the RIVM 

station, the difference between these two numbers is a measure for the influence of the 

values of the observations. The difference between these numbers is significant equal to 

0, which means that the relative uncertainty is nearly independent of the measurements. 

This conclusion only holds if the difference between the observations and the model 

simulations is small. 

 

This application is also done without the screening process, which also leads to 

numbers U
rel 

= 436 × 10
3
 for both the DCMR station and the RIVM station. The 

difference between these two numbers is also significant equal to zero, thus the relative 

uncertainty is again nearly independent of the measurements.  

 

This leads to the following conclusion: If the model simulations do not differ a lot from 

the observations, the rate of decrease of the relative uncertainty is nearly independent of 

the values of the observations. If the difference between the simulations and 

observations is large, the screening criterion throws out a lot of observations and the 

rate of decrease is smaller. This is also an indication that the model must be improved to 

get a more accurate simulation. 

 

9.6 Setting an optimal placement of monitoring stations 

9.6.1 Reduce uncertainty of important sources 

 

In this section the theory about adding virtual monitoring stations will be explained. 

The idea is to add a virtual monitoring station on a well-chosen location. This location 

is chosen such that the uncertainty of one of the important sources will be decreased. 

This will lead to a large decrease of the total uncertainty. In Section 9.2 and 9.4, some 

ideas are found for the placement of such virtual monitoring stations.  



 

 

82 /110  TNO report | TNO-034-UT-2010-02193_RPT-ML

 

 

In Section 9.2, it is shown that the emission from highway traffic, sea ships and 

background have the largest contribution on the exposure of the population to the 

concentration NOx. Therefore the virtual monitoring stations have to be located, such 

that the uncertainty of these three sources will decrease.  

Some virtual monitoring stations are added to the system on locations with dominating 

emission from respectively highway traffic, background and maritime shipping. With 

these virtual monitoring stations, the influence on the uncertainty can be calculated. 

 

If a virtual monitoring station will be added to the Kalman filter, it is important to have 

a deliberate choice for the simulated series of measurements. Section 9.5 shows that the 

absolute uncertainty depends on the measurements, also the relative uncertainty 

depends a little on the measurements. Therefore the series of measurements is simulated 

around the model simulation. This means that the difference between the observations 

and the simulations is small, thus the reduction in absolute uncertainty will be accurate. 

The relative uncertainty is nearly independent of the measurement, thus the reduction in 

this uncertainty will also be accurate. 

 

Traffic station 

 

The emission from highway traffic has the largest contribution to the exposure as shown 

in Section 9.2. A reduction in the uncertainty of this source leads to an efficient 

reduction of the total uncertainty. In the present system of monitoring stations, there are 

already two stations which cover the emission from highway traffic, these stations are 

located in Overschie and Ridderkerk. As shown in Section 9.4.1, the screening process 

throws out a lot of observations, especially for the station in Ridderkerk. This is an 

indication that the model is not accurate at those two stations, therefore the model could 

be improved to solve this problem and to reduce the uncertainty. 

 

Another method to reduce the uncertainty of the emission from highway traffic is to add 

another station which covers the emission from this source. At the Harmsen Bridge, on 

the junction of the main road A15 and local road N57, according to the model, the 

contribution from this source is 93 %. This is the largest contribution in the whole area. 

If a monitoring station is placed near this bridge the uncertainty of the emission from 

highway traffic will have a large reduction. Now a virtual monitoring system will be 

added to the system to have a look at the reduction of the uncertainty. 

 

In the right panel of Figure 9.10, the relative uncertainty is shown for the whole area. 

This relative uncertainty is calculated as an average of 5 different series of virtual 

measurements for the virtual station near the Harmsen Bridge. The figure shows the 

relative uncertainty for one of these five simulations, the other 4 have nearly the same 

pattern. In the left panel, the relative uncertainty is shown for the present situation with 

only the 9 present monitoring stations. It is obvious that the uncertainty is mainly 

decreased around the main roads. 

 

The numbers U
abs

 and U
rel

, calculated as the average of the 5 different simulations, 

become equal to respectively 15.7 × 10
3
 and 359 ×10

3
. These are reductions of 3.9 % 

with respect to the present situation with 9 monitoring stations in the area (row 11, all 

stations, in Table 9.2). The reductions with respect to the situation without any 

measurements in the Kalman filter (row 1, no stations, in Table 9.2) are 17.8 % for the 

absolute uncertainty and 19.4 % for the relative uncertainty. 
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Figure 9.10: Relative uncertainty for the whole domain. Left panel: The Kalman filter applied on the present 

stations. Right panel: The Kalman filter applied on the present stations plus an extra monitoring 

station near the Harmsen Bridge. 

 

Background station 

 

The emission from source background has a large influence on the exposure of the 

population to the concentration NOx. Table 9.1 shows that the contribution of this 

source to the total exposure is equal to 21 %. Because none of the present monitoring 

stations is dominated by this source, a good idea will be to add an extra station on a 

location where the background dominates the total emission. At the Zeedijk in Bernisse, 

south west of Rotterdam, the contribution from this source is about 55 % of the total 

emission, this is the largest contribution in the whole area. The rest of the emission at 

this location is mainly caused by the shipping sources (19 %) and by source rest (13 %). 

 

In the right panel of Figure 9.11, the relative uncertainty is shown when an extra station 

is added in Bernisse. The left panel shows the relative uncertainty if only the present 

monitoring stations are involved in the Kalman filter. The region with the largest 

contribution of source 'Background' has the largest reduction of the uncertainty. These 

regions are mainly located south west of Rotterdam.  

 

The numbers U
abs

 and U
rel

 are again calculated as an average of five different series of 

simulated measurements for the Zeedijk in Bernisse. The average of this numbers are 

U
abs 

= 14.9 × 10
6
 and U

rel 
= 346 × 10

3
, this are reductions of respectively 8.0 % and 7.2 

%, with respect to the situation with only the present monitoring stations. The 

reductions with respect to the situation without measurements are respectively 21.3 % 

and 22.2 %. 
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Figure 9.11: Relative uncertainty for the whole domain. Left panel: The Kalman filter applied on the present 

stations. Right panel: The Kalman filter applied on the present stations plus an extra virtual 

monitoring station in Bernisse. 

 

Shipping station 

 

Another source with a large contribution to the exposure is the source 'Ships sea'. This 

source covers the emission from maritime ships. In the present situation, only the 

station in Maassluis has a significant contribution from this source. Therefore an extra 

station on a location with a large contribution from the shipping sources would be a 

good choice to reduce the uncertainty. The location with the largest contribution is the 

Missouriweg nearby Hoek van Holland. On this location 57 % of the emission is from 

maritime ships, the rest of the emission is mainly caused by source background (14 %) 

and source rest (24 %). 

 

In the right panel of Figure 9.12, the relative uncertainty is shown for the situation with 

an extra station at the Missouriweg nearby Hoek van Holland. In the left panel the 

relative uncertainty is shown for the situation without extra monitoring stations. The 

figure shows that the relative uncertainty is mostly decreased in the region around the 

'Nieuwe Waterweg', the harbor entry of Rotterdam. 

 

Also for this virtual monitoring station, the numbers U
abs

 and U
rel

 are calculated from 

the average of 5 runs of the Kalman filter, with each a different series of virtual 

measurements. These number became equal to U
abs 

= 15.8 × 10
6
 and U

rel 
= 363 × 10

3
, 

reductions of 3.0 % and 2.5 % with respect to the present situation and reductions of 

15.8 % and 17.7 % with respect to the model simulation without any measurement in 

the Kalman filter. 
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Figure 9.12: Relative uncertainty for the whole domain. Left panel: The Kalman filter applied on the present 

stations: Right panel: The Kalman filter applied on the present stations plus an extra virtual 

monitoring station at the Missouriweg nearby Hoek van Holland 

 

9.6.2 Create an optimal setting of monitoring stations 

 

The results from Section 9.6.1 shows that the total uncertainty can be reduced by the 

addition of monitoring stations which covers the important sources. Now, a method will 

be described to create an optimal setting of monitoring stations in a (new) area.  

 

Suppose a city wants a monitoring system for the concentration NOx which can be 

connected with the Real Time URBIS model. The two main questions are: how many 

stations are necessary? Where should those stations be located to have an uncertainty 

which is smaller than the required uncertainty? The use of virtual monitoring stations 

can give an idea of the placement of the stations.  

 

The process starts with one monitoring station at a random place. If this (virtual) station 

is replaced to another place in the area, the total uncertainty will change. With an 

optimization algorithm it is possible to find the location for this station such that the 

total uncertainty is minimal. A possible method for this optimization is the gradient 

method, with this method the stations is moved in the direction, such that the 

uncertainty had the largest decrease. After the translation in that direction, the station is 

again translated in the direction with the largest reduction of the uncertainty.  

 

If the station is located on a (local) optimal place the process, there criterion for 

acceptable uncertainty must be checked. If this criterion is not fulfilled, the optimization 

process can be restarted with two randomly placed monitoring stations. The gradient 

method can still be applied to find the (local) optimal combination of these two 

monitoring stations. At the end of each optimization process, it must be checked if the 

uncertainty is smaller than the required uncertainty. When the target is reached, the 

setting of the stations will then be the optimal placement of the monitoring stations.  

 

This method also causes some troubles. The gradient method finds a local optimum, 

which is not necessary, the same as the global optimum. This can be avoided by several 

runs of the process. If the same optimum is found several times, it is reasonable that this 

optimum is the global optimum. Another way to avoid the problems with local optima 

is to use a global optimization algorithm. More about global optimization algorithms is 

described in Weise (1988). 
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9.7 Conclusion 

 

The relative uncertainty decreases if an extra monitoring station is added to the system. 

In Section 9.4 and 9.6, it is shown that the uncertainty decreases most if the uncertainty 

of an important source is decreased. An important source is defined as a source with a 

large contribution to the exposure of the population. 

 

In Section 9.4, it is also shown that the efficiency of the reduction decreases if more 

stations with the same dominating sources are added to the system. This leads to the 

conclusion that an optimal setting of the monitoring stations is such that each of the 

important sources is covered by at least one station. If more stations cover the same 

source, the reduction will be less efficient. In Section 9.4.4, it is shown that more 

stations for the same source will result in a diminishing return of extra reduction of the 

uncertainty. 

 

For the Rijnmond area covered in this study, the important sources are highway traffic, 

maritime shipping and background. The present stations cover mainly the sources 

highway traffic and maritime shipping. The other important source background is not 

covered by one of the monitoring stations. In Section 9.6.1, it is shown that an extra 

station which covers the source background will lead to a significant reduction of 

uncertainty. Also an extra location which covers the emission from maritime ships will 

lead to a useful reduction.  

 

Another station which covers the emission from highway traffic will also have an 

efficient reduction of the uncertainty; this is because many observations are screened in 

the two present traffic stations Overschie and Ridderkerk. More stations for the 

highway traffic are not expected to be very efficient; also stations which cover the less 

important sources will not have a very efficient reduction of the relative uncertainty. 

 

The absolute uncertainty will have an accurate reduction if the model simulations do not 

differ too much from the observations. If the model simulations are lower than the 

observations, the absolute uncertainty will be overestimated. Otherwise the absolute 

uncertainty will be underestimated if the model simulation is larger than the 

observations. If this situation occurs it will be more efficient to change the model such 

that the model fits better on the observations. Therefore a critical view on the 

differences between the observations and the simulations is necessary to say something 

about the reduction in the absolute uncertainty. 
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10 Other time resolutions 

The exposure of the population is mostly determined with annual mean concentrations. 

In the previous chapters the annual mean of the uncertainty is determined by the 

average of the hourly mean uncertainties. It could be useful to look at some different 

time scales. It is trivial that the uncertainty is smaller if the time scale is larger, the 

hourly mean concentrations fluctuates a lot and will have some extreme values. If the 

time scale is larger, the extremes will be averaged thus the uncertainty is smaller. The 

idea is that the annual mean of the uncertainty is smaller by this calculations, therefore 

the limit values for the annual mean concentrations stated in Appendix 2 of 'Wet 

Milieubeheer' (Cramer, 2007) can be checked more accurate. The limit values for the 

hourly mean concentrations can not be checked more accurate with measurements of 

daily, weekly or monthly mean concentrations.  

 

In Section 10.1, the annual mean of the uncertainty will be determined by the average of 

daily mean uncertainties, in Section 10.2 with weekly mean uncertainties and in Section 

10.3 with monthly mean uncertainties. 

 

If the time scale is larger, the number of available observations in a year will be smaller. 

With 9 monitoring stations in the area, there are a maximum of 9 × 8760 = 78840 

hourly mean concentrations available. For the daily mean concentrations, a maximum 

of 9 × 365 = 3285 observations are available. For the weekly mean, a maximum of 9 × 

52 = 468 observations are available. For the monthly mean concentrations, the number 

of observations became equal to 9 × 12 = 108. In the previous chapter, it is already 

shown that less number of observations results in smaller reduction of the uncertainty. 

 

10.1 Daily mean concentrations 

If the Kalman filter is applied for the daily mean concentrations, the maximum 

available number of observations is still 3285. Therefore the application of the Kalman 

filter will still be useful to calculate the annual mean of the uncertainty. The annual 

mean of the uncertainty is now determined by the average of daily mean uncertainties. 

In Section 10.1.2, the annual mean of the uncertainties are determined. First in Section 

10.1.1, the Kalman filter equations for this application are constructed. 

 

10.1.1 Dynamical system and Kalman filter form 

 

The Kalman filter equations have to be changed such that those equations fit the daily 

mean concentrations. The dynamical system for the logarithm of the concentration NOx 

at day k becomes the following: 
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The correction factor γi,k is the correction factor on the standard concentration field i at 

day k, mi is the standard concentration field i. The total number of standard 
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concentration fields is still equal to 88. The value ki ,µ is the average of all weight 

factors
kji ,µ at day k:  
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in here the parameter
kji ,µ is calculated for each hour j of day k. This parameter is 

calculated with the wind speed, the wind direction, the temperature, the hour of the day, 

the day of the week and the month of the year.  

 

The dynamical system (86) is again non-linear, therefore a linearization is made: 
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the model concentration (also daily mean) at day k is denoted by 
m

kc . The dynamical 

system then becomes the following: 
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where matrix A contains the temporal correlation parameters. The covariance matrix Q 

is a diagonal matrix, with the model uncertainties, both A and Q are assumed to be 

independent of time. 

 

To implement this dynamical system in the Kalman filter, it has to be written in Kalman 

filter form: 
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where R_{k} represents the uncertainty of the measurements. Furthermore 
k

y~  and 

H
~

are defined as follows: 
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where yk are the daily mean observations on day k. 
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10.1.2 Uncertainties after Kalman filtering 

 

When the Kalman filter is applied on the daily mean concentrations with the Kalman 

filter equations from Section 10.1.1, it appears that the uncertainties are smaller. The 

extreme hourly mean values are averaged out and the daily mean concentrations have 

less uncertainty. 

 

Input parameters for the Kalman filter 

 

To obtain the temporal correlation parameters for the traffic sources and for the 

shipping sources, the temporal correlations of the daily mean concentrations are 

calculated for the monitoring stations Overschie and Ridderkerk (traffic) and for 

Maassluis (shipping). This is done similar to the method in Section 6.4. In Figure 10.1, 

the temporal correlations are shown, in the left panel for monitoring stations Overschie 

and Ridderkerk and in the right panel for Maassluis. These figures shows that the daily 

mean concentrations are nearly uncorrelated, the parameters τtr and τsh seems to be close 

to 2. Calculating the correlation on the other monitoring stations leads to parameters τbg, 

τin and τre all equal to 2. 

 

The input parameters rfrac and σ are still unknown; therefore the Kalman filter will be 

applied for different values of these parameters and for the temporal correlation 

parameters close to 2. Similar to Section 6.5, the values for the Mean, Std and RMSE 

have to be optimized to find the optimal values for all input parameters. 

 

Also for the daily mean concentrations, the differences between the observations and 

the simulations are very large at the monitoring stations Overschie and Ridderkerk. 

Therefore the optimal values for rfrac, σ, τbg, τtr, τin, τsh and τre are calculated with only 

the observations from the other 7 monitoring stations. This leads to the following series 

of parameters: rfrac = 0.26, σ = 0.13 and τbg = τtr = τsh = τin = τre = 2. 

 

 

Figure 10.1: Temporal correlation for the daily mean concentrations at monitoring stations Overschie and 

Ridderkerk in the left panel and for Maassluis in the right panel 

 

Uncertainty of the model 

 

For the model uncertainty the parameter σ is important. The optimal value for this 

parameter was determined to be equal to 0.15. With this parameter the absolute and 

relative uncertainty of the model simulation could be calculated for each day on each 

point in the domain. The annual mean of all those daily mean uncertainties are shown in 
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Figure 10.2. In the left panel the absolute uncertainty is shown, in the right panel the 

relative uncertainty is shown. 

 

As a result of the smaller uncertainty of the daily mean concentrations, both the 

absolute and the relative uncertainty are smaller than for the applications with hourly 

means as in Figure 9.1. The absolute uncertainty is still very large on the main roads 

and in the industrial region around Pernis, the relative uncertainty is (as assumed) 

constant on the whole area. 

 

Also for this application it is possible to calculate the number U
abs

 and U
rel

, for the 

model simulation. These values are equal to U
abs 

= 13.1 × 10
6
 and U

rel 
= 306 × 10

3
. 

These numbers are about 31 % smaller than these numbers for the model simulations 

with hourly mean concentrations from Section 9.3. 

 

Figure 10.2: Annual mean of the absolute and the relative model uncertainty calculated as an average of 

daily mean uncertainties. 

 

Uncertainty after Kalman filter application 

 

In Figure 10.3, the absolute and relative uncertainty is shown for the whole area with all 

9 monitoring stations involved in the Kalman filter. The absolute uncertainty is 

somewhat decreased on the main roads and the industrial region around Pernis.  

 

The relative uncertainty is mostly decreased on the main roads and in the region around 

the 'Nieuwe Waterweg'. This is due to the monitoring stations which covers mostly the 

emission from traffic and shipping sources. The number U
abs

 become equal to 12.0 × 

10
6
 and the number U

rel
 became equal to 280 × 10

3
, these are reductions of 8.3 % and 

8.6 % with respect to the model simulations.  

 

These reductions are useful, but smaller than the same reductions for the application 

with hourly mean concentrations. The row 'All stations' from Table 9.2 shows that these 

reductions were equal to 14.5 % and 16.1 %. The application with daily mean 

concentrations has fewer observations, thus fewer possibilities to reduce the 

uncertainties. 

 

In Table 10.1, the reductions of the numbers U
abs

 and U
rel

 are given for all the different 

monitoring stations involved in the Kalman filter application for the daily mean 

concentrations. Comparing this table with Table 9.2 shows that the uncertainties are 

smaller due to the smaller uncertainty for the daily mean concentrations. The reductions 

with respect to the model simulations are also smaller; this is due to the smaller number 

of observations which are involved in the Kalman filter. 
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Figure 10.3: Annual mean of the absolute and the relative uncertainty calculated as an average of daily mean 

uncertainties. All nine monitoring stations are involved in the Kalman filter application. 

 

Table 10.1:  Reductions of the numbers Uabs and Urel for the daily mean concentrations in the Kalman filter 

application. 

Monitoring stations 

involved in the 

Kalman Filter 

Dominating 

source(s) at the 

monitoring station 

Number  

Uabs × 106 

Reduction with 

respect to the 

situation without 

Kalman filter 

Number 

Urel × 103 

Reduction with 

respect to the 

situation without 

Kalman filter 

No Stations --- 13.1 --- 306 --- 

Schiedam Zone card (22 %) 

Ships sea (19 %) 

Background (15 %) 

12.7 3.1 % 301 1.8 %  

Hoogvliet Zone card (21 %) 

Ships sea (21 %) 

Background (16 %) 

12.9 1.5 % 300  2.0 % 

Maassluis Ships sea (44 %) 12.9 1.6 % 298  2.8 % 

Overschie Zone card (43 %) 13.3 -1.4 % 301  1.6 % 

Ridderkerk Zone card (85 %) 12.8 2.4 % 304  0.8 % 

Bentinckplein 

(DCMR) 

Roads nearby (35 

%) CAR (24 %)  

12.7 2.6 % 303  0.9 % 

Schiedamse vest Roads nearby (25 

%) 

Background (16 %) 

Ships sea (14 %) 

12.8 2.4 % 302  1.3 % 

Vlaardingen Ships sea (24 %) 

Background (16 %) 

Zone card (14 %) 

Rest (14 %) 

CAR (14 %) 

12.8 1.8 % 301  1.8 % 

Bentinckplein 

(RIVM) 

Roads nearby (35 

%) CAR (24 %)  

12.8 2.2 % 303  1.1 % 

All stations --- 12.0 8.3 % 280  8.6 % 

Overschie + 

Ridderkerk 

--- 12.9 1.0 % 299  2.3 % 

Bentinckplein (2×)  --- 12.6 3.3 % 302   1.5 %  
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10.2 Weekly mean concentrations 

 

If the measurements and the model simulations cover the weekly mean concentrations, 

it is trivial that the uncertainty is smaller than the daily mean concentrations. The 

Kalman filter equations are the same as the equations in Section 10.1.1. Of course the 

averages are now taken over a whole week instead of a day. Analysis of the values for 

Mean, Std and RMSE as in Section 10.1.2 leads to input parameters rfrac = 0.19, σ = 

0.105 and τbg = τtr = τsh = τin = τre = 2. 

 

If the Kalman filter is applied with this input parameter, the number U
abs

 becomes equal 

to 10.5 × 10
6
 for the situation without any observations involved. The number U

rel
 

becomes equal to 248 × 10
3
, this are reductions about 44 % with respect to the 

application with hourly mean concentrations. The absolute and the relative uncertainty 

are shown for the whole domain in Figure 10.4. The uncertainties are smaller but they 

have the same patterns as the uncertainties calculated with the daily mean or the hourly 

mean concentrations.  

 

 

Figure 10.4: Annual mean of the absolute and the relative model uncertainty calculated as an average of 

weekly mean uncertainties. 

 

Figure 10.5: Annual mean of the absolute and the relative uncertainty calculated as an average of weekly 

mean uncertainties. All nine monitoring stations are involved in the Kalman filter application. 

 

A disadvantage of this application is that the number of observations which is available 

for the Kalman filter is only 9 × 52 = 468. Therefore the Kalman filter cannot reduce 

this uncertainty very much. In Figure 10.5, the relative and the absolute uncertainty are 

shown for all the measurements made on the 9 monitoring stations involved in the 
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Kalman filter. The numbers U
abs

 and U
rel

 become equal to 0.98 × 10
6
 and 233 × 10

3
. 

This are reductions of 5.4 % and 6.1 %, these reductions are smaller than the reductions 

in the applications with hourly mean or daily mean concentrations, but they still have 

nearly the same pattern. Finally in Table 10.2 all reductions are shown for each 

different monitoring station. 

 

Table 10.2:  Reductions of the numbers Uabs and Urel for the weekly mean concentrations in the Kalman 

filter application. 

Monitoring stations 

involved in the 

Kalman Filter 

Dominating source(s) 

at the monitoring 

station 

Number  

Uabs × 106 

Reduction with 

respect to the 

situation without 

Kalman filter 

Number 

Urel × 103 

Reduction with 

respect to the 

situation without 

Kalman filter 

No Stations --- 10.5 --- 248 --- 

Schiedam Zone card (22 %) 

Ships sea (19 %) 

Background (15 %) 

10.1 2.7 % 245 1.4 % 

Hoogvliet Zone card (21 %) 

Ships sea (21 %) 

Background (16 %) 

10.4 0.9 % 245 1.1 % 

Maassluis Ships sea (44 %) 10.4 0.3 % 243 2.2 % 

Overschie Zone card (43 %) 10.7 -2.1 % 245 1.0 % 

Ridderkerk Zone card (85 %) 10.3 1.4 % 247 0.3 % 

Bentinckplein 

(DCMR) 

Roads nearby (35 %) 

CAR (24 %)  

10.2 2.3 % 246 0.6 % 

Schiedamse vest Roads nearby (25 %) 

Background (16 %) 

Ships sea (14 %) 

10.1 3.1 % 245 1.2 % 

Vlaardingen Ships sea (24 %) 

Background (16 %) 

Zone card (14 %) 

Rest (14 %) 

CAR (14 %) 

10.4 0.8 % 244 1.5 % 

Bentinckplein 

(RIVM) 

Roads nearby (35 %) 

CAR (24 %)  

10.3 1.2 % 246 0.9 % 

All stations --- 0.98 5.4 % 233 6.1 % 

Overschie + 

Ridderkerk 

--- 10.5 -0.5 % 245 1.3 % 

Bentinckplein (2 ×)   10.3  1.8 %  245  1.1 % 

 

10.3 Monthly mean concentrations 

 

When the time resolution is changed into monthly mean concentrations, the uncertainty 

becomes again smaller than with weekly or daily mean concentrations. A disadvantage 

of monthly mean concentrations is that the maximum number of measurements in a 

year is equal to 9 × 12 = 108. Therefore the Kalman filter does not have many 

possibilities to reduce the uncertainty. Analysis of the values for RMSE, Mean and Std, 

leads to input parameters τbg = τtr = τsh = τin = τre = 2, σ = 0.07 and rfrac = 0.165. 
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If the Kalman filter is applied with this input parameters on the monthly mean 

concentrations, then the number U
abs

 becomes equal to 6.9 × 10
6
 and U

rel 
becomes equal 

to 166 × 10
3
, this holds when no observations are involved in the Kalman filter.  

 

If all the observations from the 9 monitoring stations are involved the following 

uncertainties are found: U
abs 

= 6.7 × 10
3
 and U

rel 
= 160 × 10

3
. This equals with 

reductions of respectively 2.9 % and 3.1 %, again smaller reductions than in the 

application with hourly, daily or weekly mean concentrations. In Figure 10.6 and Figure 

10.7, the absolute and relative uncertainties are shown for both the situation without any 

measurements and the situation with all measurements involved. In Table 10.3, all the 

reductions of the absolute and relative uncertainty are shown. 

 

 

Figure 10.6: Annual mean of the absolute and the relative model uncertainty calculated as an average of 

monthly mean uncertainties. 

 

 

Figure 10.7: Annual mean of the absolute and the relative uncertainty calculated as an average of monthly 

mean uncertainties. All nine monitoring stations are involved in the Kalman filter application. 
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Table 10.3:  Reductions of the numbers Uabs and Urel for the monthly mean concentrations in the Kalman 

filter application. 

Monitoring stations 

involved in the Kalman 

Filter 

Dominating source(s) 

at the monitoring 

station 

Number  

Uabs × 106 

Reduction 

with respect to 

the situation 

without 

Kalman filter 

Number 

Urel × 103 

Reduction 

with respect to 

the situation 

without 

Kalman filter 

No Stations --- 6.9 --- 166 --- 

Schiedam Zone card (22 %) 

Ships sea (19 %) 

Background (15 %) 

6.8 1.9 % 164 0.8 % 

Hoogvliet Zone card (21 %) 

Ships sea (21 %) 

Background (16 %) 

6.9 1.2 %  165 0.5 % 

Maassluis Ships sea (44 %) 7.0 -0.9 % 163 1.3 % 

Overschie Zone card (43 %) 7.0 -1.6 % 165 0.2 % 

Ridderkerk Zone card (85 %) 6.9 0.2 % 166 0.0 % 

Bentinckplein (DCMR) Roads nearby (35 %) 

CAR (24 %)  

6.8 2.2 % 165 0.4 % 

Schiedamse vest Roads nearby (25 %) 

Background (16 %) 

Ships sea (14 %) 

6.8 2.2 % 165 0.6 % 

Vlaardingen Ships sea (24 %) 

Background (16 %) 

Zone card (14 %) 

Rest (14 %) 

CAR (14 %) 

6.9 0.3 % 164 0.9 % 

Bentinckplein (RIVM) Roads nearby (35 %) 

CAR (24 %)  

6.9 0.5 % 165 0.5 % 

All stations --- 6.7 2.9 % 161 3.1 % 

Overschie + Ridderkerk --- 7.0 -1.6 % 165 0.2 % 

Bentinckplein (2×)  --- 6.8 2.1 % 165 0.7 % 

 

10.4 Combining various time resolutions 

In the previous sections, it is shown that the efficiency of the Kalman filter application 

reduces if the time resolution becomes larger. On the other hand, the automatic 

monitoring system to create hourly mean concentrations is relatively expensive. 

Therefore a cheap alternative is: extend the present system with 9 monitoring stations 

with hourly mean concentrations with a system of monitoring stations with monthly 

mean concentrations. To imply this in the Kalman filter application, the state equation 

and also the Kalman filter equations must be changed. 

 

10.4.1 Kalman filter equations for combined time scaled 

 

In the situation with hourly mean and monthly mean observations, the state equation 

must contain all the hourly mean concentrations from the past month. At the end of the 
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month all concentrations from the past month will be corrected with the information 

from the monthly mean observations. The state equation becomes the following: 
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The vector ch,k corresponds with the hourly mean concentrations on time k on locations 

with hourly mean measurements. The vector cm,k corresponds with the hourly mean 

concentrations on locations with monthly mean measurements. In the present situation 

the vector with hourly mean concentrations is of length 9. The length of vector cm,k 

depends on the number of (new) stations which covers monthly mean concentrations. 
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where mh,i and mm,i are the standard concentrations of source i on the locations with 

respectively hourly and monthly mean measurements. 

 

For the hourly mean concentration on time k, the same state equation as in Equation 

(27) still holds: 
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This leads to a total state kc~ with state equation: 
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The total vector with unknowns is: 
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Further there have to be a vector with observations:  
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in here yh,k is the hourly mean concentration on time k. The vector ym,k compares with 

the monthly mean concentration from time step k-719 to time step k (the mean 

concentration over the past 30 days). 

 

These observations have to be connected with the concentrations ck. Because the 

observations have a log-normal distribution, the following equation holds: 
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in here Ih is the identity matrix with size as large as the number of stations with hourly 

mean measurements, Im is the identity matrix with size as large as the number of stations 

with monthly mean measurements. 

 

These equations are again not linear in the variableγ~ , therefore a linearization is made 

around γ~  = 0. This leads to the following system of equations: 
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with: 
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Finally the temporal correlation matrix A between the vectors
1

~
+k

γ and 
k

γ~ and the 

matrix Q, corresponding with the uncertainty of the model, must be determined. The 

matrix A will have the following form: 
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where the matrix A1, size 88 × 88, corresponds with the temporal correlation matrix 

between vectors 
1

~
+k

γ  and 
k

γ~ , this must be the same matrix as in Section 6.2. The 

identity matrices have also size 88 × 88, these matrices shifts the vectors γk-1 through 

the large vectorγ~ . 

 

The matrix Q corresponds with the uncertainty of the state vector at time k thus this 

matrix is: 
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with Q1, size 88 × 88, as in Section 6.2. 

 

10.4.2 Results of the Kalman filter with different time scales 

 

If the Kalman filter is applied with the Kalman filter equations as described in the 

Section 10.4.1, two important results occurs. At the end of each month the uncertainty 

of all correction factors will decrease, because of the presence of the monthly mean 

observations. Further, at each time step the uncertainty of the correction factors from 

the 720 time steps before are decreased. The reason for this reduction is the structure of 

the covariance matrix P. The covariance between the correction factors on time k and 

the correction factors on times k-1, k-2 …k-719 are not equal to 0. Therefore the 

minimum variance gain minimizes the variances of the correction factors of the 

previous 719 time steps.  

 

The rate of reduction of the uncertainty from the previous time steps is therefore 

dependent on the temporal correlation. If the temporal correlation is large, the Kalman 

filter will cause a large reduction of the uncertainty from the previous time steps. The 

idea behind these reductions is that a small uncertainty of a correction factor on time k 

must lead to a small uncertainty of the same correction factor on the next time step. 

 

The result of this application is very difficult to determine because the state vector is a 

vector of length 88 × 720 = 63360. Therefore the matrices A, Q and P are of size 63360 

× 63360, the present computer systems can not (yet) handle these large matrices.  

 

Therefore the application is not done with hourly mean concentrations but with the 

average concentration over 3 hours. In that case the state vector has length 88 × 3 = 264, 

which can be handled by the present computers. The patterns of the reductions are again 

the same as for the situation with only hourly mean concentrations. Thus the reduction 
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of the uncertainty by adding stations with monthly mean concentrations is a reasonable 

idea. 

 

From now on it is again possible to create an optimization algorithm such that the total 

uncertainty connected with the population will be minimized. This algorithm must build 

in the same way as in Section 9.6.2. 
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11 Structural inaccuracies of the Real Time URBIS model 

11.1 Correction factors per standard concentration field 

In the first part of this report, the Kalman filter is applied to the Real Time URBIS 

model. The result of this application is a correction factor for each hour for each 

standard concentration field. It is now possible to calculate an annual mean of these 

correction factors. The annual mean of the correction factors for standard concentration 

field i is given by the following expression: 
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 (103) 

 

If the annual mean of a certain correction factor is significantly different from 1, it is 

possible that the corresponding standard concentration field have some structural 

inaccuracies.  

 

In Table 11.1, the annual means of all correction factors are given for each standard 

concentration field. The results in this table shows that the correction factors for the 

source 'Background' are little larger than 1, while the correction factors for the traffic 

sources are little smaller than 1. This could give an indication that the emissions from 

traffic and the background concentration should be better estimated by the model. 

 

Another interesting fact is that the correction factors for the wind directions east and 

south are mostly larger than the correction factors for the wind direction north and west. 

This can also be caused by some inaccuracies in the model. If the wind is from the east 

or the south, there is mostly not much turbulence in the air (stable weather). This little 

turbulence causes less dispersion of the air pollution, thus larger concentrations NOx. In 

the model, there is no distinction between stable and unstable weather. The larger 

correction factors for the wind directions east and south indicates that the model should 

make a difference between stable and unstable weather. 
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Table 11.1: Mean of the correction factors for each standard concentration field. 

Wind speed 1.5 m/s 5.5 m/s 

Source/ Wind direction N  E S W N E S W 

Abroad (*) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Background 1.01 1.03 1.04 1.01 0.99 1.02 1.07 1.01 

Zone card 0.97 0.99 1.00 0.98 0.97 0.99 0.98 0.96 

CAR 0.98 1.00 1.00 0.99 0.95 0.98 0.96 0.94 

Roads nearby 0.95 1.02 0.98 0.96 0.94 0.99 0.94 0.96 

Roads far 0.99 1.02 1.01 1.00 1.00 1.00 1.00 1.00 

Industry 1.00 1.01 1.01 1.00 1.00 1.01 1.01 1.00 

Domestic 1.00 1.02 1.01 1.00 1.00 1.00 1.00 1.00 

Ships inland (*) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Ships sea 0.98 1.04 1.04 0.98 0.99 1.01 1.01 0.99 

Rest 0.99 1.02 1.01 1.00 0.99 1.01 1.00 0.99 

 

(*) The sources Abroad and Ships sea only have a very small contribution to the total 

concentration, therefore the correction factor for these sources is equal to 1. 

 

11.2 Correction factors per emission source 

 

Another application of the Kalman filter in the Real Time URBIS model is that the 

original model only gets 11 correction factors; each of the sources gets a correction 

factor instead of 8 per source. The corrected concentration 
corr

kc is given by the 

following formula:  
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where µji,k is the weight for the standard concentration field on time k of source j and 

wind combination i. The vector mji is the standard concentration field of source j and 

wind combination i. The correction factor on time k for source j is given by kje ,γ
. 

 

The result of this application is that each emission source gets a correction factor on 

each hour. The annual means for 2006 of this correction factors are given in Table 11.2. 

In this table also the annual means of the correction factors are calculated as an average 

of correction factors with other time scales. The correction factors for the other time 

scales are calculated with Equation (104) with k as time step day, week or month. 

 

In this table, the correction factors for the source 'Background' are little larger than 1, 

while the correction factors for the traffic sources are little smaller than 1. This leads to 

the same ideas as in Section 11.1, the emissions from the traffic sources and the 

background concentrations have possible inaccuracies. 
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Table 11.2: Mean of the correction factors per emission source 

Source Hourly Daily Weekly Monthly 

Abroad (*) 1.00 1.00 1.00 1.00 

Background 1.05 1.05 1.03 1.02 

Zone card 0.96 0.98 1.01 1.03 

CAR 0.95 0.95 0.98 0.99 

Roads nearby 0.94 0.94 0.93 0.88 

Roads far 1.00 1.00 0.98 0.96 

Industry 1.01 1.01 1.00 0.99 

Domestic 1.01 1.00 0.99 0.97 

Ships inland (*) 1.00 1.00 1.00 1.00 

Ships sea 1.00 1.01 1.02 1.10 

Rest 1.00 0.99 0.98  0.97  

 

(*) The sources Abroad and Ships sea only have a very small contribution to the total 

concentration, therefore the correction factor for these sources is equal to 1. 
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12 Conclusions and discussion 

In this part, three extensions of the Kalman filter in the Real Time URBIS model are 

described. With these three extensions it is possible to reduce the uncertainty of the 

estimated concentration NOx.  

 

In the first extension, a method is described to add some extra monitoring stations. The 

main conclusion is that the total uncertainty connected with the population will be 

minimized if the extra monitoring station is located such that the emission from the 

important sources is covered. In the Rijnmond area are the sources 'Background', 'Ships 

sea' and 'Zone card' stated as important sources. Therefore some possible locations for 

extra monitoring stations are: The Zeedijk in Bernisse, the Harmsen Bridge on the 

junction of the A15 and the N57 and the Missouriweg in Hoek van Holland. 

 

The second extension on the Kalman filter is the application of the Kalman filter with 

different time scales. The uncertainty of the model simulation is smaller if the model 

covers daily, weekly or monthly concentrations. This is because the extremes which can 

occur in hourly mean calculations are averaged out. On the other hand, the Kalman 

filter has less information from measurements to reduce the uncertainty. The patterns of 

the uncertainty are nearly the same for each time scale; therefore it is possible to add 

some monitoring stations to the system with different time scales. In a Kalman filter, it 

is possible to combine different time scales. With this combination it is again possible 

to find an optimal setting of extra monitoring stations with another time scale. 

 

Finally the correction factors, calculated in the first part of this report are analyzed. If 

the annual mean of a correction factor is significantly different from 1, this is possibly 

caused by an inaccuracy of the comparing standard concentration field. One of the 

possibilities is that the emission from a certain source is not accurate in the model, but 

this is not necessary. It is also possible that other assumptions in the model cause an 

inaccuracy, or the representativity of some measurements is not sufficient. Therefore 

the correction factors only leads to some ideas of the origin of the inaccuracies. 

 

In total the Kalman filter is a good instrument to reduce the uncertainty of the model 

simulation. One method is: extra monitoring stations which correct the model 

simulation. The other method is: analyze the information about the inaccuracies of the 

model and use this information to improve the model. 
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