State of the art in benefit–risk analysis: Environmental health

From Testiwiki
Revision as of 15:38, 20 April 2012 by EssiV (talk | contribs)
Jump to: navigation, search


This page (including the files available for download at the bottom of this page) contains a draft version of a manuscript, whose final version is published and is available in the Food and Chemical Toxicology 50 (2012) 40–55. If referring to this text in scientific or other official papers, please refer to the published final version as: M.V. Pohjola, O. Leino, V. Kollanus, J.T. Tuomisto, H. Gunnlaugsdóttir, F. Holm, N. Kalogeras, J.M. Luteijn, S.H. Magnússon, G. Odekerken, M.J. Tijhuis, Ø. Ueland, B.C. White, H. Verhagen: State of the art in benefit–risk analysis: Environmental health. Food and Chemical Toxicology 50 (2012) 40–55, doi:10.1016/j.fct.2011.06.004 .

Title

Editing State of the art in benefit–risk analysis: Environmental health

Authors and contact information

M.V. Pohjola, corresponding author
(National Institute for Health and Welfare, Finland)
(Tel.: +358 17 201479; fax: +358 17 201480, E-mail: mikko.pohjola@thl.fi)
S.H. Magnússon
(Matís, Icelandic Food and Biotech R&D, Iceland)
N. Kalogeras
(Maastricht University, School of Business and Economics, The Netherlands)
G. Odekerken-Schröder
(Maastricht University, School of Business and Economics, The Netherlands)
H. Gunnlaugsdόttir
(Matís, Icelandic Food and Biotech R&D, Iceland)
F. Holm
(FoodGroup Denmark & Nordic NutriScience, Denmark)
O. Leino
(National Institute for Health and Welfare, Finland)
V. Kollanus
(National Institute for Health and Welfare, Finland)
J.M. Luteijn
(University of Ulster, School of Nursing, United Kindom)
M.J. Tijhuis
(Maastricht University, School of Business and Economics, The Netherlands)
(National Institute for Public Health and the Environment, The Netherlands)
J.T. Tuomisto
(National Institute for Health and Welfare, Finland)
Ø. Ueland
(Nofima, Norway)
B.C. White
(University of Ulster, Department of Pharmacy & Pharmaceutical Sciences, School of Biomedical Sciences, Northen Ireland, United Kindom)
H. Verhagen
(National Institute for Public Health and the Environment, The Netherlands)
(Maastricht University, NUTRIM School for Nutrition, Toxicology and Metabolism, The Netherlands)
(University of Ulster, Northern Ireland Centre for Food and Health, Northern Ireland, United Kindom)

Article info

Article history: Available online 12 June 2011

Abstract

Environmental health assessment covers a broad area: virtually all systematic analysis to support decision making on issues relevant to environment and health. Consequently, various different approaches have been developed and applied for different needs within the broad field. In this paper we explore the plurality of approaches and attempt to reveal the state-of-the-art in environmental health assessment by characterizing and explicating the similarities and differences between them. A diverse, yet concise, set of approaches to environmental health assessment is analyzed in terms of nine attributes: purpose, problem owner, question, answer, process, use, interaction, performance and establishment. The conclusions of the analysis underline the multitude and complexity of issues in environmental health assessment as well as the variety of perspectives taken to address them. In response to the challenges, a tendency towards developing and applying more inclusive, pragmatic and integrative approaches can be identified. The most interesting aspects of environmental health assessment are found among these emerging approaches: (a) increasing engagement between assessment and management as well as stakeholders, (b) strive for framing assessments according to specific practical policy needs, (c) integration of multiple benefits and risks, as well as (d) explicit incorporation of both scientific facts and value statements in assessment. However, such approaches are yet to become established, and many contemporary mainstream environmental health assessment practices can still be characterized as relatively traditional risk assessment.

Keywords

Environmental health, Benefit–risk assessment, Impact assessment, Integrated assessment

Introduction

The term ‘‘environmental health assessment’’ covers a broad area. In principle, all endeavors of systematic analysis aiming to support decision making on all issues relevant to the relationships between environment and human health could be considered environmental health assessments. Given this breadth and complexity, it is not surprising that a diverse range of approaches building on different grounds and addressing different needs within the field have evolved. They all share the basic idea of applying sciencebased means and methods for producing knowledge to support decision making on societally relevant issues. Due to differences in emphasis, scope, theoretical basis and context of development and application, the basic idea becomes manifested in different ways in each approach. Fig. 1 illustrates the complexity of environmental health field and the domains, as well as limitations, of certain assessment approaches. As can be seen, some approaches focus on risks only, while others consider benefits as well. Approaches also differ in terms of what risks and/or benefits are included for explicit consideration and comparison in an assessment.

This paper reviews a concise set of approaches to environmental health assessment. It does not attempt to be an exhaustive review of all relevant approaches in the field, but an overview of a sufficiently extensive and diverse set of existing approaches so that the plurality of views, as well as the essential characteristics present in contemporary approaches to environmental health assessment, can be explicated. The summary of the overview results provides a general description of contemporary practices and a basis for conclusions on the most essential aspects of environmental health assessment in terms of contemporary and future benefit– risk analysis, within environmental health as well as other domains.

Framework for analyzing approaches to environmental health assessment

The set of approaches selected for the overview is intended to be extensive, diverse, yet concise, in order to be sufficiently representative of the field of environmental health assessment, but still analyzable. The final composition of the set of approaches results from a process of reasoning by the authors, and is based on prior knowledge and experience in the field of environmental health. The guiding principles in choosing approaches were that all the main areas and aspects of environmental health assessment should be covered, but only approaches significantly adding to the diversity of the set were included in the overview.

The final set includes approaches that identify themselves as risk assessment, impact assessment or integrated assessment. Some of the included approaches have been explicitly developed to serve the needs of regulatory work, while some build more on the tradition of academic research. The approaches also vary significantly in terms of novelty and establishment. As different interpretations on the essence of many of the chosen approaches exist, we have tried to pick the hallmark examples of each. For the sake of transparency and clarity, only as few sources of information as possible have been chosen as the basis for describing and characterizing each approach.

We created a framework for the analysis in order to guarantee a consistent scrutiny across the set of approaches, and to produce comparable characterizations. The basic structure and the attributes of the framework are adapted from the PSSP (purpose, structure, state, performance) ontology (Pohjola 2003, 2006) developed originally in the context of process design. The attributes address the way each approach frames its purpose, issues of interest, assessment practice, linkage with use, as well as goodness of the assessment process and product. The attributes are presented and briefly explained in Table 1.

The characterizations of the different assessment approaches are in the form of freely formatted textual expressions and graphical illustrations, and are primarily based on one or two selected sources of information – books, scientific articles or websites. In cases where these sources do not contain sufficient or explicit descriptions of the characteristics of the approach, additional information sources or author’s own interpretations are used as complementary material. In particular the characterizations of interaction, performance, and establishment often include author judgments informed by the source material and authors’ experience within the field.

All process diagrams (Figs. 2–9) have been taken from the primary information sources and modified into the same format, still maintaining their original characteristics. In these diagrams the process of doing work in a part of an assessment is described as either a thin-border box or a white, bulky arrow. The products of this work (often reports of some kind) are described as thickborder boxes. Information flows between work processes are described with thin solid arrows. Unlike Figs. 2–9 which are process diagrams, Fig. 1 is an influence diagram. It describes real-world phenomena (white nodes) and their causal connections (thin arrows).

The categorization of the models of interaction is an adaptation of a categorization for models of linking knowledge and action developed by van Kerkhoff and Lebel (2006) in the context of sustainable development. The adapted categories of interaction are presented and briefly explained in Table 2. The categories are perceived to form a continuum of increasing engagement and power sharing when moving from trickle-down towards learning.

The main characteristics of the selected assessment approaches are summarized and combined for comparison and synthesis. The purpose of the overview is not to rank the different approaches, but to highlight the essential similarities and differences between them, and to represent the plurality of views on environmental health assessment. Some of the most interesting findings are also taken for a further scrutiny. Finally, conclusions regarding the aspects of environmental health assessment that other fields of assessment, e.g. food benefit–risk assessment, could benefit taking account of are drawn based on the overview summary.

Approaches to environmental health assessment

This chapter contains the characterizations of eight different approaches to environmental health assessment: Red Book risk assessment (NRC, 1983), Understanding risk (NRC, 1996), IRGC (International Risk Governance Council) risk governance framework (IRGC, 2005), Chemical risk assessment: REACH (Registration, evaluation, authorization, and restriction of chemical substances) (ECHA 2008a), Environmental impact assessment (EIA): YVA (Ympäristövaikutusten arviointi, Finnish for EIA) (Act on Environmental Impact Assessment Procedure 468/1994, revised 267/1999 and 458/2006; EIA Decree 794/1994, revised 268/1999 and 713/2006), Health impact assessment (WHO, 1999), Integrated environmental health impact assessment (Briggs, 2008), and Open assessment (Opasnet website; Tuomisto and Pohjola (Eds.), 2007). The main characteristics of all approaches are summarized in Tables 3a and 3b and discussed in chapter 4.

Red Book risk assessment

In 1983, the Committee on the Institutional Means for Assessment of Risk to Public Health in the National Research Council (NRC) in the United States of America (USA) published a report commonly referred to as the ‘‘Red Book’’, which explored the intricate relations between science and policy in assessing adverse health effects associated with human exposure to toxic substances (NRC, 1983). This description of a systematic process that separates risk assessment from policy making and unifies the risk assessment guidelines for all regulatory agencies can be considered as the cornerstone of contemporary risk assessment.

The purpose of a risk assessment is to characterize the potential adverse health effects of environmental hazards and the uncertainties related to the assessment. The assessment is produced to serve the needs of risk management, i.e. the process of evaluating alternative regulatory actions and selecting among them. Risk management is an agency decision making process that entails consideration of political, social, economic, and engineering information to develop, analyze, and compare regulatory options and to select the appropriate regulatory response to a potential chronic health hazard. Risk assessment and risk management are considered as independent entities. The problem owners in risk assessment process are the scientific experts dealing with the issue. Respectively, the decision making problems in risk management are owned by the public officials in the agencies responsible for dealing with the particular issue.

Risk assessment aims to answer the question: what is the estimated incidence of an adverse effect in a given population? As an answer, the assessment provides an estimate of the risk.

The risk assessment process (Fig. 2) consists of four steps: hazard identification (does the agent cause an adverse effect?), dose– response assessment (what is the relationship between dose and incidence in humans?), exposure assessment (what exposures are currently experienced or anticipated under different conditions?), and risk characterization, which summarizes the results of the previous steps. Risk assessment is considered to be a strictly scientific process conducted by experts, and it should be separated from the decision making and risk management to safeguard the objectivity and credibility of the assessment.

Risk assessment results are used in a federal agency policy decision making process. In the risk management process, agency decisions and actions are taken based on the risk estimates considered together with information on regulatory options and their potential public health, economic, social, and political consequences. In principle, the risk management addresses the question: ‘‘which regulatory option regarding the risk should be chosen?’’.

The model of interaction is best described as transfer and translate. Results of an assessment are intended and targeted for a predefined need, but there is no interaction between the assessment process and use, not to mention stakeholders, besides transferring of the risk assessment results to the risk management process. The performance of risk assessment is evaluated based on an uncertainty analysis of the estimates produced in the risk characterization step. Goodness of the decisions made based on the risk estimates is an issue belonging to the risk management process and it is not considered as an aspect of assessment performance.

The Red Book approach is the cornerstone of nearly all contemporary risk assessment related practices. Despite its several recognized limitations, practical implementations of the Red Book approach can be seen everywhere where risk assessment is being practiced. The approach is undoubtedly established and forms the core of most subsequently developed risk and related assessment approaches. For example, a good account of application of the Red Book principles in food and nutrition risk assessment is given in Tijhuis et al. (this issue).

Understanding risk

In 1996, the Committee on Risk Characterization of the National Research Council (NRC) in USA published a report ‘‘Understanding Risk: Informing Decisions in a Democratic Society’’ (NRC, 1996). This report can be considered as a follow-up on the Red Book assessment framework (NRC, 1983). It focuses on re-interpreting risk characterization as an analytic-deliberative process between public officials, scientists, and stakeholders.

The purpose of the analytic-deliberative process is to improve decision making upon risks. The essential role of risk characterization is to integrate risk assessment (understanding) and risk management (action) into one risk decision process, and thereby enhance practical understanding of risks and their management options. The application area of the approach is not limited as such, but in the report the Committee positioned their considerations explicitly within the field of governmental and industry level risk management, particularly in the context of the USA. The problem owners are the public officials with a legislative mandate to protect the public health.

Risk characterization is considered as a decision-driven activity, where a diagnosis of the decision situation is needed already in a problem formulation stage. The questions addressed may be related to many different kinds of risk-related issues, for example regulating industrial processes; setting emissions standards; taxing emissions and effluents; establishing cancer potency values; informing individuals at risk; improving risk analysis techniques (e.g. selection of default assumptions) or guidelines for making inferences from data; or creating policy strategies or implementation. The questions asked in different cases may be formulated in different ways. As answers, the analytic-deliberative process synthesizes information gathered and interpreted concerning the decision options chosen for consideration. No complete agreement or single solution is required, or even expected, to be achieved.

Analytic-deliberative risk characterization is an iterative process of problem framing, process design, option and outcome selection, information gathering, and synthesis, which ultimately leads to a decision by the responsible actors (Fig. 3). The analytic-deliberative process also extends to implementation and evaluation of the decision made.

The public officials with a legislative mandate to protect the public use the assessment results in their decision making. The model of interaction is best described as negotiation. The analytic- deliberative process is an on-going process between public officials, experts, and other stakeholders that takes learning and feedback into account. The actual decision making and use of produced information, however, takes place outside the analyticdeliberative process, and the results of risk characterization are considered as only one of the inputs into the decision making.

Because the analytic-deliberative process extends to the implementation and evaluation of the decision made, the performance of the assessment process is addressed in terms of the goodness of implemented decisions. As the name, analytic-deliberative process implies, evaluation is based on both analytical data and interpretation. On the other hand, the analytic-deliberative process is, in itself, a process of interpreting the quality of knowledge obtained by scientific risk assessment and the deliberating the implications of the knowledge quality to decision making regarding the specific issues.

The report ‘‘Understanding risk’’ has gained considerable recognitionamongprofessionals working in the related fields, particularly in the USA. On the other hand, despite that the approach builds on the cornerstone of the contemporary risk assessment (the Red Book approach), broad scale implementation of the analytic-deliberative process as described by the report is rare, and the establishment of the approach can not be considered very strong. However, it can be considered to have significantly influenced the development and implementation of several subsequently developed risk assessment, risk management and related approaches and practices.

IRGC risk governance framework

The International Risk Governance Council (IRGC), founded in 2003, is a private, independent, not-for-profit Foundation based in Geneva, Switzerland. Its mission is to support governments, industry, non-governmental organizations (NGOs) and other organizations in their efforts to deal with major and global risks facing society and to foster public confidence in risk governance. The IRGC risk governance framework was published in an IRGC white paper in 2005 (IRGC, 2005). The white paper intends to provide an integrated, holistic and structured approach, a framework, by which risk issues and the governance processes and structures pertaining to them can be investigated.

The purpose of the risk governance framework is to integrate scientific, economic, social and cultural aspects and include the effective engagement of stakeholders. The framework reflects IRGC’s own priorities, which are the improvement of risk governance strategies for risks with international implications and which have the potential to harm human health and safety, the economy, the environment, and/or the fabric of society at large. It particularly emphasizes dealing with so called ‘systemic risks’ (OECD, 2003). Furthermore, it places most attention on risk areas of global relevance (i.e. transboundary, international and ubiquitous risks) which additionally include large-scale effects (including low-probability, high-consequence outcomes), require multiple stakeholder involvement, lack a superior decision-making authority, and have a potential to cause wide-ranging concerns and outrage. Depending on the issue the problem owners can be various, e.g. members of governmental bodies, scientific communities, business organizations, NGOs or the civil society.

The questions asked in the IRGC risk governance framework do not cover all risk areas but its efforts are confined to (predominantly negatively evaluated) risks that lead to physical consequences in terms of human life, health, and the natural and built environment. It also addresses impacts on financial assets, economic investments, social institutions, cultural heritage or psychological well-being as long as these impacts are associated with the physical consequences. By linking risk governance with societal context, the framework reflects the important role of risk–benefit evaluation and the need for resolving risk–risk trade-offs. The pre-assessment phase frames the issue (what risks, what boundaries, who are stakeholders, what is the capability to address the problem). Scientific risk assessment describes and quantifies the physical aspects (potential damages, probability of occurrence, cause-effect relationships, measures to tackle the problem). In contrast, concern assessment describes societal and psychological aspects (public concerns and perceptions, social response, roles of institutions, governance structures, media, stakeholder objectives and values, inequities). Characterization and evaluation look at the societal outcomes in the arena of possible actions (economic, environmental, quality of life, ethical issues, risk reduction, substitution, or compensation, stakeholder commitment). Risk management considers aspects of decision making related to the issue (responsible parties, management options, priorities, trade-offs, effectiveness of measures).

The answers to risk questions always refer to a combination of two components: the likelihood of potential consequences and the severity of consequences of human activities and/or natural events. Such consequences can be positive or negative, depending on the values that people associate with them. Investigating systemic risks goes beyond the usual agent-consequence analysis and focuses on interdependencies and spill-overs between risk clusters. IRGC’s approach puts particular emphasis on categorizing the knowledge about the cause-effect relationships considered in the assessment sphere. The risks can be categorized as simple, complex, uncertain, or ambiguous. The categorization of risks can be used as the basis for choosing risk management strategies and deciding on the appropriate level of stakeholder involvement.

The process of handling systemic risks is a holistic approach to hazard identification, risk assessment, concern assessment, tolerability/ acceptability judgments and risk management (Fig. 4). The process breaks down into three main phases: ‘pre-assessment’, ‘appraisal’, and ‘management’. A further phase, consisting of ‘characterization’ and ‘evaluation’ of risk, is placed between the appraisal and management phases and, depending on whether those charged with the assessment or those responsible for management are better equipped to perform the associated tasks, can be assigned to either of them. The risk process has ‘communication’ as a companion to all phases of addressing and handling risk and is itself of a cyclical nature. However, the clear sequence of phases and steps offered by this process is primarily a logical and functional one and will not always correspond to reality.

The concept of risk governance comprises a broad picture of risk: not only does it include what has been termed ‘risk management’ or ‘risk analysis’, it also looks at how risk-related decisionmaking unfolds when a range of actors is involved. Governing choices in modern societies is seen as interplay between governmental institutions, economic forces and civil society actors (such as NGOs).

The intended use of the framework or assessments conducted according to its principles has not been explicitly specified. In principle, the range of users can be as broad as the range of problem owners, but particularly those with the power to influence and manage systemic risks in a global context.

The model of interaction is best described as participation. Multiple stakeholders and different aspects of risk are integrated into a single framework. The framework does, however, build on relatively sharp demarcations between expert-driven risk assessment practices, decision maker-driven risk management practices, and distinct practices of stakeholder involvement.

Performance is evaluated separately for the assessment sphere and the management sphere. The state and quality of the knowledge applied in the risk assessment is evaluated in terms of complexity, uncertainty, and ambiguity, and the results of the evaluation serve as an important input into the risk characterization and evaluation phase. In the risk management phase, performance is evaluated by a procedure adopted from the decision theory. Risk management options are generated, assessed, evaluated, selected, implemented, and monitored. The view on the risk management performance can be characterized as a checklist-type quality assurance procedure that ensures that all steps in the sequence have been given proper attention. However, the practical work is not meant to be based strictly on the sequence. Rather, it is a dynamic process where different steps are iteratively improved whenever new information and understanding becomes available.

IRGC was founded in 2003 and the risk governance framework published in 2005. Hence, the framework can be considered as a relatively novel construct. However, the framework appears to be well recognized among actors in environmental health assessment, and can be assumed to have influenced the thinking in this field. However, because the framework does not describe any specific assessment or governance practice, it is difficult to estimate to what the extent it has been applied in practice. Therefore, in terms of establishment the framework could be considered a relatively well-established theoretical construct, but not broadly applied in practice.

Chemical safety assessment: REACH

Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) is a European Community Regulation on chemicals and their safe use. It aims to improve the protection of human health and the environment through better and earlier identification of the intrinsic properties of chemical substances. Under REACH, a chemical safety assessment (ECHA 2008a) is required if a substance is manufactured or imported into the European Union (EU) at 10 tons or more per year per registrant. Comprehensive description, guidance and documentation on REACH can be found from the European Chemicals Agency website (http://echa.europa.eu/).

The purpose of the assessment (Chemical Safety Assessment, CSA) is to evaluate risks arising from the manufacture and use of a substance, and to define conditions under which the manufacture and use are safe in terms of both human health and the environment. The assessment covers the manufacture, all identified uses (processing, formulation, consumption, storage, keeping, treatment, filling production of an article or any other utilization) and the life cycle stages resulting from these, and health risks are evaluated for workers, consumers, and those exposed through the environment. The novelty of REACH is that the responsibility to assess and manage the risks is placed on industry. Hence, the problem owner is the manufacturer or importer of the chemical substance.

The question asked in the assessment is whether a chemical substance poses a health or environmental hazard, and if so, what uses and use conditions can be considered safe in terms of both human health and the environment. As an answer, the substance is classified and labeled according to hazards related to its use. If a substance meets certain classification criteria in regard to the potential hazards, safe exposure scenarios and use conditions are described.

The assessment process consists of a hazard assessment, exposure assessment and risk characterization (Fig. 5). The latter two are conducted only for substances classified as dangerous (based on Directive 67/548/EEC), PBT (persistent, bioaccumulative and toxic) or vPvB (high persistency and high tendency to bioaccumulate, but not necessarily proven toxicity) in the hazard assessment. Exposure scenarios are defined and exposure estimated based on all identified uses, use conditions and life stages of the substance. Risk is characterized by comparing the estimated exposures to safe exposure levels. Risks are considered to be adequately controlled when exposures do not exceed the safe levels, or the emissions and exposures are minimized or avoided. If risks are not under control, the assessment is refined by obtaining better data on the substance properties or exposures, or changing the manufacturing or use conditions. This iterative process continues until the risks are shown to be under control, and a so-called final exposure scenario is defined. If risks can not be shown to be controlled for a specific use, and no more iterations are possible or economically viable, the chemical safety report must advise against the use of the chemical.

Assessment results are used in communicating the substance properties and safe use conditions (operational conditions and required risk management measures) to the downstream users in the supply chain. The CSA is also used as an important source of information in substance evaluations conducted by the REACH authorities. Substance evaluations are performed for all priority substances. These are substances for which there is some health or environmental concern and which meet the priority criteria developed by the REACH authorities.

The model of interaction adopted by the approach is best described as transfer and translate, although to some extent also as participation. Manufacturers and importers of the same substance are encouraged to work in collaboration when conducting the risk assessment. The assessor collects information on the exposure conditions along the supply chain, and may establish a dialog with representative customers in doing so. The downstream users also have the right to notify the assessor regarding their own uses of the substance. When the assessment is completed, the assessor is obliged to communicate the results to the downstream users.

The performance of the assessment is formally evaluated by the REACH authorities. The quality of information used has to meet the minimum information requirements. Uncertainty analysis is recommended but voluntary. The European Chemicals Agency (ECHA) performs compliance checks for a selection of registration dossiers (including the CSA). It is stated in the guidance document on dossier and substance evaluation that the percentage of checked dossiers is not to be lower than 5% of all dossiers received by the agency for each tonnage band, and that both random and nonrandom selection methods are applied. The aim of the process is to ensure that all required information is included in the dossier, and that this information is adequate. The contents of the CSA are also further reviewed by REACH authorities in case a substance evaluation is conducted.

Implementation of REACH is still in the beginning stages. Therefore, the assessment process has not yet been implemented to a large extent in practice. However, due to its regulatory status in EU, the methodology will become widely established in the following years.

Environmental impact assessment: YVA

YVA is a Finnish regulatory framework for environmental impact assessment (Act on Environmental Impact Assessment Procedure 468/1994, revised 267/1999 and 458/2006; EIA Decree 794/ 1994, revised 268/1999 and 713/2006). It is a national implementation of the European EIA Directive (Council Directive 85/337/EEC of 27 June 1985 on the assessment of the effects of certain public and private projects on the environment, amend. 97/11EC, 2003/ 35/EC and 2009/31/EC), and can therefore be here assumed to somewhat representative of the whole target area of the directive as well as the mainstream theories of EIA underlying the directive. The aim of the YVA regulation is to promote consideration of environmental issues, including environmental health issues, when deciding upon permissions and constraints for activities which may have wide societal and environmental implications. The framework emphasizes information flow and public participation in impact assessments. The main specific characteristics of YVA in regard to the European EIA Directive are its confinement to large projects (only approximately 50 assessments/year), and legal requirement for participation in 2 phases (Jantunen and Hokkanen, 2010).

The purpose of an YVA assessment is to evaluate all potential environmental impacts of a proposed large-scale project. The assessment should take into account health, environmental and social impacts as well as technical and economical issues. Problem owners are the ones with the intent to plan and execute the project and they have the legal obligation to initiate the assessment process.

The YVA process addresses questions related to potential impacts of planned projects on human and animal health and well being, environment (e.g. soil, water, air, climate, and vegetation), composition of society (e.g. building, landscape, cultural heritage) and exploitation of natural resources. Annually between 30–50 projects undergo the assessment prescribed by the EIA act in Finland (Pölönen et al., 2010). Smaller projects undergo a lighter environmental assessment procedure in the form of the environmental permit system. Answers are provided as impact estimates and a synthesis of all quantitative/qualitative information gathered concerning the potential impacts of the planned activity, possible alternative activities, and in a situation where no activity takes place.

The assessment process is divided into two phases, planning of the assessment as well as execution and reporting the assessment (Fig. 6). In the planning phase, an evaluation program is constructed based on all available information on the project and